
Theory and implementation of efficient canonical systems for

sentential calculus, based on Prime Normal Forms

www.bucephalus.org

first version May 1999, revised version September 2002

1

Abstract

A literal conjunction γ = [∧λ1...λm] is a prime factor of a Disjunctive Normal Form (DNF) ∆ =[∨[∧λ11...λ1m1]...
[∧λn1...λnmn]] iff γ ⇒ ∆ and none of the λ1, ..., λm could be deleted without violating γ ⇒ ∆. A DNF
∆ = [∨γ1...γn] is a prime DNF (PDNF) iff {γ1, ..., γn} is the set of all its prime factors. Every sentential
formula has exactly one equivalent PDNF so that this defines a canonic representation which is distinguished
from other possible canonizations. PDNF’s can be constructed with the well–known Quine–McCluskey method,
but that implementation is of exponential complexity and thus not practical in general. Therefore an efficient
algorithm is designed in this paper. A dual system for prime conjunctive normal forms (PCNF’s) is presented
as well. It is shown how the whole sentential calculus, all junctions and semantic decisions, is effectively handled
by these two systems.

2

Contents

1 Introduction: Normal Forms 4

2 Basic concepts of sentential logic, DNF’s and CNF’s 6

3 * Implementation: The DNF and the CNF system 9

4 Special DNF’s and CNF’s 11

5 Covering and Subvalence 17

6 * Implementation of a fast subvalence decision with Prime Normal Forms 18

7 Component pairs 19

8 * Implementation: Minimal and Prime Normal Forms of component pairs 21

9 The M–Procedure 23

10 * Implementation of the M–Procedure 24

11 The completeness theorem and the P–Procedure 28

12 * Implementation of the P–Procedure 31

13 * Implementation: The PDNF and the PCNF system 33

3

1 Introduction: Normal Forms

Formal expressions, and logical expressions in particu-
lar, can be very different but still denote the same.
For instance
• “5/2” and “2.5”
• “¬∀x(f(x) 6= g(x))” and “∃x(f(x) = g(x))”

These examples are quite simple, but this ambiguity is
a complex and important problem in general. Algebra,
sometimes even the whole of mathematics is often said
to be the reasoning about the equivalence of expres-
sions. What is always desired in particular is a trans-
formation of “difficult”, “incomprehensible” forms into
“simple”, “compact”, and “understandable” or “stan-
dard” forms. In logic we talk about “normal forms”.

Definition
Let F be the set of all formulas (of a particular lan-
guage) and N ⊆ F . If there is for every ϕ ∈ F a
ν ∈ N such that ϕ ⇔ ν (i.e. ϕ and ν are equiva-
lent), then N is called a set of normal forms.
Every function nf : F −→ N with nf(ϕ) ⇔ ϕ for
every ϕ ∈ F is called a (N–)normalizer (on F) and
nf(ϕ) is a (N–)normalform of ϕ.

Most of the time there are several possibilities to de-
fine standard or normal forms. The context then deter-
mines which of the definitions is preferred. The decimal
notation for numbers has a long tradition in daily life,
but in computer science it is more practical to use the
dual representation.

There is a series of criteria to describe and compare
the qualities of normal forms:
• Intuitivity: How comprehensive and readable are

the formulas?
• Canonicity: How much do syntactic and semantic

similarities coincide?
Definition

A set N of normal forms is canonic, if for all
ν1, ν2 ∈ N : ν1 ⇔ ν2 iff ν1 = ν2.
Accordingly a normalizer nf : F −→ N is said to
be canonic, if nf(ϕ1) = nf(ϕ2) for all ϕ1, ϕ2 ∈ F
with ϕ1 ⇔ ϕ2.

If a definition of canonic normal forms is possible,
the whole semantics of a language can be defined
immediately as well: the normal form then is the
meaning of an expression or a formula.

• Complexity of the representation: How big are
the normal forms?

• Computational complexity: How high is the ef-
fort required for the normalizer and how do the nor-
mal forms behave in additional operations?

• Conservativity of the normalizer: If ϕ is a nor-
mal form already, is then nf(ϕ) = ϕ? This would
contribute to the readability.

• Realizability as technical devices: Are the occur-
ing junctors implementable? What is the behaviour
of the divice in time? etc.

There is quite a number of possibilities to define normal
forms in sentential logic. Most often the so–called “dis-
junctive” and the “conjunctive normal forms” (DNF’s
and CNF’s) are used.
Arguments for their superiority are:
• Their intuitivity:
• CNF’s are like a collection of elementary laws:

Axiom systems, deductive systems are essentially
CNF’s.

• DNF’s are like a collection of elementary possibil-
ities, similar to catalogues or inductive systems.

• As such they can often be modified by just adding
or deleting components.

• Their similarity with arithmetics (Boole).

But DNF’s and CNF’s are not canonic already. In-
terestingly they are established as standards in sen-
tential logic, but there are hardly any definitions of
canonic DNF’s and CNF’s, not to mention any estab-
lished standard.1 I suggest, the reason lies partly in
the inner algebraic structure of sentential logic itself,
which, at first sight, seems to refuse a canonization that
would be superior in all quality criterias: The smallest
DNF’s (or CNF’s) mostly look a little bit different to
the, in some respect, most comprehensible2 DNF’s etc.
Another reason might be, that potential standards are
easily defined, but can be constructed only with con-
siderable efforts.

The goal of this paper is first to show, that there is
in fact only just one (reasonable) canonization of the

1In fact there are the often so–called “canonic” DNF’s, that consist of all their maximal literal conjunctions. For instance, the
“canonic DNF” of [A → B] would be [∨[∧AB][∧AB][∧AB]]. The advantage of this form is that sentential logic turns into set
theory in this way: conjunction, disjunction and negation of formulas become the intersection, union, and complementation of sets
of maximal literal conjunctions. But these forms, except for simple cases, cannot be handled in practice because of the exponential
demands of their representation. (Besides, strictly spoken these forms are not even canonic. For instance, [∨[∧]] and [∨[∧A][∧A]]
are both “canonic”, but they are equivalent and yet not equal.)

2see the chapter on subvalence and covering

4

DNF’s and CNF’s, a “natural canonic” so to say, that
we will call “(ordered) prime disjunctive/conjunctive
normal forms”. It doesn’t need new theorems and
proofs to demonstrate that, one must only conse-
quently ask the question for a canonic. The answer
then is a proposal for a standardization of sentential
logic. Really new, I think, is the method that con-
structs all the prime factors of any given formula. Dif-
ferent to the common method of Quine–McCluskey our
algorithm is not of exponential, but of polynomial com-
plexity3, so that non–trivial applications can be mas-
tered as well. In this way the proposed standardization
of the propositional calculus is not only theoretically,
but also practically well founded.
The intention is to equally satisfy two kinds of read-

ers: the specialist in Boolean algebras, who is investi-
gating the possibility of “factorizing” the elements of
these structures similar to the factorization in integer
domains. Secondly the computer scientist who needs
to build fast systems based on the sentential calculus
and is looking for the quickest algorithms that can be
implemented into sequential machines without further
modification or refinement and altogether enable the
full range of logical operations (i.e. junctions and se-
mantic decisions). Because these two interests are quite
conflicting, we separated the implementations from the
algebraic core: the chapters that have “ * Implemen-
tation: ...” in their title can be seen as appendices and
should be skipped.

3[Comment September 2002: At the time of the first publication I didn’t bother with complexity issues and I only mentioned
them in footnotes. But obviously, it was a very naive thing to claim polynomial complexity without proving it. A paper about this
neglected aspect is currently in progress.]

5

2 Basic concepts of sentential
logic, DNF’s and CNF’s

Definition
From now on A shall be a fixed set of atoms. (For
example the set of all non–empty strings made of
letters and digits.)
We assume that there is a linear order ≤A defined
on A. (For example, the lexical order).
We also write for α1, α2 ∈ A

α1 <A α2 iff (α1 ≤A α2 and α1 6= α2)
(Most of the time we will omit the subscript A and
simply write ≤ and <.)

Definition
The set of all formulas (on A) is recursively defined
as follows:4

• Every α ∈ A is an (atomic) formula.
• 0 and 1 are formulas.
• ¬ϕ the negation of ϕ is a formula for every for-

mula ϕ.
• If n ≥ 0 and ϕ1, ..., ϕn are formulas, so are5

[∧ϕ1...ϕn] the conjunction of ϕ1, ..., ϕn

[∨ϕ1...ϕn] the disjunction of ϕ1, ..., ϕn

[∧ϕ1...ϕn] the nand-junction of ϕ1, ..., ϕn

[∨ϕ1...ϕn] the nor-junction of ϕ1, ..., ϕn.
• For formulas ϕ1 and ϕ2 the following expressions

are formulas:
[ϕ1 → ϕ2] the subjunction of ϕ1 and ϕ2

[ϕ1 ↔ ϕ2] the equijunction of ϕ1 and ϕ2

Definition
In formulas of the form [∗ϕ1...ϕn] we call n the arity
of length and the ϕ1, ..., ϕn the components of the
junction.
At(ϕ) denotes the set of all atoms occuring in a for-
mula ϕ.
= denotes the syntactic identity of two formulas.

Examples
If ϕ = [[∧A¬B] → [A ↔ C]] then At(ϕ) =
{A,B,C}.
[∧AB] = [∧AB] but [∧AB] 6= [∧BA]

Definition
Let ∗ ∈ {∧,∨,∧,∨}, ϕ′ be a formula and ϕ =
[∗ϕ1...ϕn] and ψ = [∗ψ1...ψm] be formulas. We
write

• ϕ′ ∈ ϕ, ϕ is an element or component of ϕ, iff
ϕ′ ∈ {ϕ1, ..., ϕn}.

• ϕ′ 6∈ ϕ, iff ϕ′ is not an element of ϕ.
• ϕ ⊆ ψ, ϕ is contained in ψ, iff {ϕ1, ..., ϕn} ⊆
{ψ1, ..., ψm}.

• ϕ 6⊆ ψ iff ϕ is not contained in ψ.
• ϕ ⊂ ψ, ϕ is properly contained in ψ, iff ϕ ⊆ ψ

and ψ 6⊆ ϕ.
• ϕ 6⊂ ψ iff ϕ is not properly contained in ψ.

Definition
The order ⇒ and the equivalence relation ⇔ on the
set of formulas are defined as usual. We will only
submit the notations and terminology. For any two
formulas ϕ1 and ϕ2

• ϕ1 ⇒ ϕ2 means ϕ1 is subvalent to ϕ2 or ϕ2 fol-
lows from ϕ1. In that case we say that ϕ1 is an
implicand of ϕ2 and that ϕ2 is a consequence
of ϕ2.

• ϕ1 ; ϕ2 denotes that ϕ1 is not subvalent to ϕ2.
• ϕ1 ⇔ ϕ2 means that ϕ1 and ϕ2 are equivalent.
• ϕ1 < ϕ2 denotes that ϕ1 and ϕ2 are not equiva-

lent.
Furthermore we write
• ϕ1⇒̇ϕ2, ϕ1 is properly subvalent to ϕ2, iff
ϕ1 ⇒ ϕ2 and ϕ1 < ϕ2.

As usual, we call a formula ϕ
• valid or a tautology, iff ϕ⇔ 1
• satisfiable iff ϕ < 0
• a contradiction iff ϕ⇔ 0

Definition
• A literal is either an atom (positive literal) or a

negated atom (negative literal).
• For a literal λ, its complement is defined as

λ :=
{
α if λ = ¬α is a negative literal
¬α if λ = α is a positive literal

• Two literals λ1 and λ2 are called complemen-
tary, iff λ1 = λ2.

• |λ| denotes the atom that occurs in a literal λ.

Definition
• If λ1, ..., λn are literals, n ≥ 0, we call

[∧λ1...λn] a literal conjunction, and
[∨λ1...λn] a literal disjunction.

• A literal conjunction [∧λ1...λn] is called a normal
literal conjunction or NLC iff |λ1| < ... < |λn|.

• A literal disjunction [∨λ1...λn] is called a normal

4We shall see later in our implementations that our system is very flexible in changing the set of junctors. For every new junctor
we only need to add two lines in the algorithm dnf (and cnf).

5If there is a danger of confusion, blanks will be inserted between the components of these junctions, and we would for example
write [∧ ϕ1 ϕ2 ϕ3] instead of [∧ϕ1ϕ2ϕ3]

6

literal disjunction or NLD iff |λ1| < ... < |λn|.6

Theorem
• A literal conjunction is a contradiction if and only

if it contains a pair of complementary literals.
• A literal disjunction is a tautology if and only if it

contains a pair of complementary literals.

And since neither NLC’s nor NLC’s contain any pair
of literals with the same element, we immediately get
the following

Theorem
• 0⇒̇γ for each NLC γ.
• δ⇒̇1 for each NLD δ.

Theorem
• For any two NLC’s γ1 and γ2

• γ1 ⇒ γ2 iff γ2 ⊆ γ1

• γ1⇒̇γ2 iff γ2 ⊂ γ1

• γ1 ⇔ γ2 iff γ1 = γ2

• For any two NLC’s δ1 and δ2
• δ1 ⇒ δ2 iff δ1 ⊆ δ2
• δ1⇒̇δ2 iff δ1 ⊂ δ2
• δ1 ⇔ δ2 iff δ1 = δ2

There are infinitely many literal conjunctions equiva-
lent to a given literal conjunction γ. But only one of
them is normal. (The same holds for literal disjunc-
tions.)

There are different possibilities to define a reasonable
linear order on the set of NLC’s and NLD’s. We will
need this order(s) only for the reason of completion (see
the notes on “canonicity” further on), we don’t employ
it in the main part of our work. We shall choose the
usual lexical order (with the convention, that a positive
is lexically smaller than the complementary negative
literal). The reader may modify the choice as pleased.

Definition
With ∗ ∈ {∧,∨} let [∗λ1...λn] and [∗λ′1...λ′m] be ei-
ther two NLC’s or NLD’s. We define

[∗λ1...λn] ≤ [∗λ′1...λ′m]
iff n = 0

or |λ1| < |λ′1|
or ¬λ1 = λ′1

or (λ1 = λ′1 and [∗λ2...λn] ≤ [∗λ′2...λ′m]).
Otherwise, we also write [∗λ1...λn] 6≤ [∗λ′1...λ′m].

Definition
• If γ1, ..., γn are NLC’s with n ≥ 0, then [∨γ1...γn]

is called a disjunctive normal form or DNF.
• If δ1, ..., δn are NLD’s with n ≥ 0, then [∧δ1...δn]

is called a conjunctive normal form or CNF.

Definition
• A DNF [∨γ1...γn] is said to be ordered iff γ1 ≤
... ≤ γn.

• A CNF [∧δ1...δn] is said to be ordered iff δ1 ≤
... ≤ δn.

(If n = 0 or n = 1, the forms are ordered by defini-
tion.)

At first sight our definition of DNF’s (and CNF’s)
might seem inconsequent, because
• either we follow the common convention and don’t

demand any syntactic order at all: A “DNF” would
then be a disjunction of literal conjunctions

• or we consequently approach canonicity and demand
a full order inside the forms: A “DNF” would then
be our ordered DNF.

The main reason for our definition is the fact that it
allows us to implement the fastest algorithms. To de-
mand that every literal conjunction must be normal is
certainly no loss for the readability of the form and it
immediately speeds up the processes. To demand that
the NLC’s must be ordered in a sequence would on the
other hand just slow down everything. For this reason
we will soon even weaken the concept of canonicity for
CNF’s and DNF’s a little bit.

Theorem
• For every DNF ∆ = [∨γ1...γn] holds

∆ ⇔ 0 iff n = 0.
• For every CNF Γ = [∧δ1...δn] holds

Γ ⇔ 1 iff n = 0.

Proof
Because 0⇒̇γ for every NLC γ and [∨ϕ1...ϕn] ⇒
[∨ϕ1...ϕnγ] for every n ≥ 0 and all formulas
ϕ1, ..., ϕn, there is 0⇒̇∆ for every DNF ∆ =
[∨γ1...γn] with n > 0.
The dual proof holds for CNF’s.

Theorem
Every formula ϕ has an (ordered) DNF as well as an
(ordered) CNF.

6Instead of being one list of literals, NLC’s (and NLD’s) can be implemented as two lists of atoms, according to the transforma-
tion [∧ABCDEF] ⇔ [∧[∧BCF][∨ADE]]. Since the atom is the basic unit of sentential logic, one could dispense all junctors with
this implementation. The whole system could be managed only by using the data structures atom and list. DNF’s (and CNF’s)
would then be lists of pairs of ordered atom lists. But in practice it is actually more common to take the literal and not the atom
as the basis unit. We won’t discuss the arguments for doing so.

7

This is well known and doesn’t need a proof here. In-
stead we present two sets of algorithms (the “DNF sys-

tem” and the “CNF system”) that include a normalizer
each (namely “dnf” and “cnf”).

8

3 * Implementation: The DNF
and the CNF system

The following DNF and CNF system are some kind of
prototype for the final PDNF and PCNF system (see
last chapter).
Their central functions are the normalizers dnf and cnf.
These are recursively implemented by making exhaus-
tive use of de Morgans law and the junctor transforma-
tions into the ∧-∨-¬ system, so that only the disjunc-
tions and conjunctions of DNF’s and CNF’s need to be
specified furthermore. These could be done exclusively

by using the distributive laws and the concatenation of
conjunctions and disjunctions. But as we insist on the
“normality” of literal conjunctions and disjunctions,
the two functions nlc-and-nlc for the conjunction of two
NLC’s and nld-or-nlc for the disjunction of two NLD’s
must not be implemented as concatenations, but need
a more complex treatment. This is done by the auxil-
iary algorithm jrec.
jrec (the recursive implementation of these junctions)
merges its first two parameters stepwise into its third
argument, which is returned in the end. We make use
of the duality principle and therefore we can use it both
for nlc-and-nlc and nld-or-nld.

The DNF system: Declarations The CNF system: Declarations

The Normalizer The Normalizer

dnf (ϕ) dnf (ϕ)
is a DNF of ϕ, for every formula ϕ. is a CNF of ϕ, for every formula ϕ.

Conjunctions and Disjunctions Conjunctions and Disjunctions

nlc-and-nlc (γ1, γ2) nld-or-nld (δ1, δ2)
is a DNF of [∧γ1γ2], for every two NLC’s γ1 and γ2. is a CNF of [∨δ1δ2], for every two NLD’s δ1 and δ2.

nlc-or-nlc (γ1, γ2) nld-and-nld (δ1, δ2)
is a DNF for [∨γ1γ2], for every two NLC’s γ1 and γ2. is a CNF for [∧δ1δ2], for every two NLD’s δ1 and δ2.

nlc-and-dnf (γ, ∆) nld-or-cnf (δ, Γ)
is a DNF for [∧γ∆], for every NLC γ and DNF ∆. is a CNF for [∨δΓ], for every NLD δ and CNF Γ.

nlc-or-dnf (γ, ∆) nld-and-cnf (δ, Γ)
is a DNF for [∨γ∆], for every NLC γ and DNF ∆. is a CNF for [∧δΓ], for every NLD δ and CNF Γ.

dnf-and-dnf (∆1, ∆2) cnf-or-cnf (Γ1, Γ2)
is a DNF for [∧∆1∆2], for every two DNF’s ∆1 and ∆2. is a CNF for [∨Γ1Γ2], for every two CNF’s Γ1 and Γ2.

dnf-or-dnf (∆1, ∆2) cnf-and-cnf (Γ1, Γ2)
is a DNF for [∨∆1∆2], for every two DNF’s ∆1 and ∆2. is a CNF for [∧Γ1Γ2], for every two CNF’s Γ1 and Γ2.

dnf-conj ((∆1, ..., ∆n)) cnf-disj ((Γ1, ..., Γn))
is a DNF for [∧∆1...∆n], for every list (∆1, ..., ∆n) of DNF’s with n ≥ 0. is a CNF for [∨Γ1...Γn], for every list (Γ1, ..., Γn) of CNF’s with n ≥ 0.

dnf-disj ((∆1, ..., ∆n)) cnf-conj ((Γ1, ..., Γn))
is a DNF for [∨∆1...∆n], for every list (∆1, ..., ∆n) of DNF’s with n ≥ 0. is a CNF for [∧Γ1...Γn], for every list (Γ1, ..., Γn) of CNF’s with n ≥ 0.

The DNF system: Implementation The CNF system: Implementation

dnf (ϕ) cnf (ϕ)

:=



[∨[∧ϕ]] if ϕ is an atom

[∨] if ϕ = 0

[∨[∧]] if ϕ = 1

[∨[∧¬α]] if ϕ = ¬α and α is atom

[∨[∧]] if ϕ = ¬0

[∨] if ϕ = ¬1

dnf (ϕ′) if ϕ = ¬¬ϕ′

dnf-disj ((dnf (¬ϕ1), ..., dnf (¬ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

dnf-conj ((dnf (¬ϕ1), ..., dnf (¬ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

dnf-conj ((dnf (ϕ1), ..., dnf (ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

dnf-disj ((dnf (ϕ1), ..., dnf (ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

dnf-and-dnf (dnf (ϕ1), dnf (¬ϕ2)) if ϕ = ¬[ϕ1 → ϕ2]

dnf-or-dnf (
dnf-and-dnf (dnf (ϕ1), dnf (¬ϕ2)),
dnf-and-dnf (dnf (¬ϕ1), dnf (ϕ2))) if ϕ = ¬[ϕ1 ↔ ϕ2]

dnf-conj (dnf (ϕ1), ..., dnf (ϕn)) if ϕ = [∧ϕ1...ϕn]

dnf-disj (dnf (ϕ1), ..., dnf (ϕn)) if ϕ = [∨ϕ1...ϕn]

dnf-disj (dnf (¬ϕ1), ..., dnf (¬ϕn)) if ϕ = [∧ϕ1...ϕn]

dnf-conj (dnf (¬ϕ1), ..., dnf (¬ϕn)) if ϕ = [∨ϕ1...ϕn]

dnf-or-dnf (dnf (¬ϕ1), dnf (ϕ2)) if ϕ = [ϕ1 → ϕ2]

dnf-or-dnf (
dnf-and-dnf (dnf (ϕ1), dnf (ϕ2))
dnf-and-dnf (dnf (¬ϕ1), dnf (¬ϕ2))) if ϕ = [ϕ1 ↔ ϕ2]

:=



[∧[∨ϕ]] if ϕ is an atom

[∧[∨]] if ϕ = 0

[∧] if ϕ = 1

[∧[∨¬α]] if ϕ = ¬α and α is atom

[∧] if ϕ = ¬0

[∧[∨]] if ϕ = ¬1

cnf (ϕ′) if ϕ = ¬¬ϕ′

cnf-disj ((cnf (¬ϕ1), ..., cnf (¬ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

cnf-conj ((cnf (¬ϕ1), ..., cnf (¬ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

cnf-conj ((cnf (ϕ1), ..., cnf (ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

cnf-disj ((cnf (ϕ1), ..., cnf (ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

cnf-and-cnf (cnf (ϕ1), cnf (¬ϕ2)) if ϕ = ¬[ϕ1 → ϕ2]

cnf-or-cnf (
cnf-and-cnf (cnf (ϕ1), cnf (¬ϕ2)),
cnf-and-cnf (cnf (¬ϕ1), cnf (ϕ2))) if ϕ = ¬[ϕ1 ↔ ϕ2]

cnf-conj (cnf (ϕ1), ..., cnf (ϕn)) if ϕ = [∧ϕ1...ϕn]

cnf-disj (cnf (ϕ1), ..., cnf (ϕn)) if ϕ = [∨ϕ1...ϕn]

cnf-disj (cnf (¬ϕ1), ..., cnf (¬ϕn)) if ϕ = [∧ϕ1...ϕn]

cnf-conj (cnf (¬ϕ1), ..., cnf (¬ϕn)) if ϕ = [∨ϕ1...ϕn]

cnf-or-cnf (cnf (¬ϕ1)cnf (ϕ2)) if ϕ = [ϕ1 → ϕ2]

cnf-or-cnf (
cnf-and-cnf (cnf (ϕ1), cnf (ϕ2))
cnf-and-cnf (cnf (¬ϕ1), cnf (¬ϕ2))) if ϕ = [ϕ1 ↔ ϕ2]

nlc-and-nlc (γ1, γ2) nld-or-nld (δ1, δ2)

:= jrec (γ1, γ2, [∧]) := jrec (δ1, δ2, [∨])

nlc-or-nlc (γ1, γ2) nld-and-nld (δ1, δ2)

:= [∨γ1γ2] := [∧δ1δ2]

nlc-and-dnf (γ, [∨γ1...γn]) nld-or-cnf (δ, [∧δ1...δn])

:= dnf-disj ((nlc-and-nlc (γ, γ1), ..., nlc-and-nlc (γ, γn))) := cnf-conj ((nld-or-nld (δ, δ1), ..., nld-or-nld (δ, δn)))

nlc-or-dnf (γ, [∨γ1...γn]) nld-and-cnf (δ, [∧δ1...δn])

:= [∨γγ1...γn] := [∧δδ1...δn]

dnf-and-dnf ([∨γ1...γn], ∆) cnf-or-cnf ([∧δ1...δn], Γ)

:= dnf-disj ((nlc-and-dnf (γ1, ∆), ..., nlc-and-dnf (γn, ∆))) := cnf-conj ((nld-or-cnf (δ1, Γ), ..., nld-or-cnf (δn, Γ)))

dnf-or-dnf ([∨γ1...γn], [∨γ′1...γ′m]) cnf-and-cnf ([∧δ1...δn], [∧δ′1...δ′m])

:= [∨γ1...γnγ′1...γ′m] := [∧δ1...δnδ′1...δ′m]

dnf-conj ((∆1, ..., ∆n)) cnf-disj ((Γ1, ..., Γn))

:=


[∨[∧]] if n = 0

∆1 if n = 1

dnf-and-dnf (∆1, dnf-conj ((∆2, ..., ∆n))) if n > 1
:=


[∧[∨]] if n = 0

Γ1 if n = 1

cnf-or-cnf (Γ1, cnf-disj ((Γ2, ..., Γn))) if n > 1

dnf-disj ((∆1, ..., ∆n)) cnf-conj ((Γ1, ..., Γn))

:=


[∨] if n = 0

∆1 if n = 1

dnf-or-dnf (∆1, dnf-disj ((∆2, ..., ∆n))) if n > 1
:=


[∧] if n = 0

Γ1 if n = 1

cnf-and-cnf (Γ1, cnf-conj ((Γ2, ...Γn))) if n > 1

Auxiliary algorithms

∗ :=
{
∨ if ∗ = ∧
∧ if ∗ = ∨

}
for ∗ ∈ {∧,∨}

jrec ([∗λ1...λn], [∗λ′1...λ′m], [∗µ1...µk])

:=



[∗[∗µ1...µkλ′1...λ′m]] if n = 0

[∗[∗µ1...µkλ1...λn]] if m = 0

jrec ([∗λ2...λn], [∗λ′1...λ′m], [∗µ1...µkλ1]) if n > 0 and m > 0 and |λ1| < |λ′1|

jrec ([∗λ1...λn], [∗λ′2...λ′m], [∗µ1...µkλ′1]) if n > 0 and m > 0 and |λ′1| < |λ1|

jrec ([∗λ2...λn], [∗λ′2...λ′m], [∗µ1...µkλ1]) if n > 0 and m > 0 and λ1 = λ′1

[∗] if n > 0 and m > 0 and λ1 = λ′1

10

4 Special DNF’s and CNF’s

Introduction

A major disadvantage of the DNF system7 is the often
unnecessary length of the normal forms which impairs
the readability and increases the costs for its represen-
tations and further operations.
The following two examples are equivalent DNF’s:
• [∨[∧ABC][∧AB][∧B][∧C][∧C]]
• [∨[∧]]

But the second form will certainly be prefered in all
practical means.
In our search for a good canonic we will therefore start
off with an attempt to find as “small” and “handy”
forms as possible. But a remarkable and, on a first
view may be even astonishing phenomenon of senten-
tial logic is the fact, that here “small” and “handy”
are quite close together, but nevertheless might mean
significantly different forms in many cases.
In this chapter we will formally conceptualize the de-
sired criteria and we will find three differend special
kinds of DNF’s:
• MDNF’s or minimal DNF’s,which are in fact the ab-

solutely shortest DNF’s.
• M2DNF’s or pairwise minimal DNF’s, where each

two components are a 2–ary MDNF [∨γiγj].
• PDNF’s or prime DNF’s, where the components are

exactly the set of all “prime factors”.

As we said, these forms are quite often identical. But
in fact they are different concepts and for the construc-
tion and comparison of DNF systems it is important to
work out these differences and to analyse the properties
of these forms.

Canonicity

First of all we are going to weaken the concept of canon-
icity, because we want to neglect the order of the com-
ponents in the normal forms. It only obstructs the flow
of our argumentation and unnecessarily increases the
costs of the algorithms. Besides, normalizations that
are not canonic in general, but still canonic in certain
semantically distinguished cases, deserve an extra at-
tention. For example a normalizer nf that is at least
“1–canonic”, provides us with a subvalence and equiv-
alence decision, because

ϕ1 ⇒ ϕ2 iff nf([ϕ1 → ϕ2]) = nf(1).

These kind of normalizers might not define a whole
semantic, but at least they enable the definitions of
“tautology / contradiction” and “validity / satisfiabil-
ity”.

Definition
• Two DNF’s ∆1 = [∨γ1...γn] and ∆2 = [∨γ′1...γ′m]

are said to be identical up to the order of
their components, or similar in short, written
∆1 ≈ ∆2, iff there is a bijection i : {1, ..., n} −→
{1, ...,m} such that [∨γi(1)...γi(n)] = [∨γ′1...γ′m].

• Two CNF’s Γ1 = [∧δ1...δn] and Γ2 = [∧δ′1...δ′m]
are said to be identical up to the order of
their components, or similar in short, written
Γ1 ≈ Γ2, iff there is a bijection i : {1, ..., n} −→
{1, ...,m} such that [∨δi(1)...δi(n)] = [∨δ′1...δ′m].

Definition
Let N be a set of DNF’s (CNF’s) that is itself a set
of normal forms (i.e. for every formula there is an
equivalent formula in N). We say that N is
• canonic, when for all ν1, ν2 ∈ N
ν1 ⇔ ν2 iff ν1 = ν2

• pre-canonic, when for all ν1, ν2 ∈ N
ν1 ⇔ ν2 iff ν1 ≈ ν2

• 0–canonic, when there is only one contradiction
in N

• 1–canonic, when there is only one tautology in
N .

Accordingly a N–normalizer nf is called
• canonic, if nf(ϕ1) = nf(ϕ2) for all formulas ϕ1

and ϕ2 with ϕ1 ⇔ ϕ2

• pre-canonic, if nf(ϕ1) ≈ nf(ϕ2) for all formulas
ϕ1 and ϕ2 with ϕ1 ⇔ ϕ2

• 0–canonic, if nf(ϕ) = nf(0) for all contradictory
formulas ϕ.

• 1–canonic, if nf(ϕ) = nf(1) for all contradictory
formulas ϕ.

The following theorem immediately follows from this
definition and it guarantees that a pre–canonic nor-
malizer is actually as good as a canonic one.

Theorem
If nf is a pre–canonic normalizer and ord the func-
tion, that transforms an arbitrary formula into its
ordered normal form, then ord◦nf is a canonic nor-
malizer.8

Theorem

7The “principle of duality” guarantees that all true statements about DNF’s turn into true statements about CNF’s by inverting
all occuring junctors. Therefore we will restrict ourselves mainly to DNF’s in the following explanations and proofs.

8ord ◦ nf(ϕ) := ord(nf(ϕ))

11

DNF’s are
• neither canonic nor pre–canonic
• not 1–canonic
• 0–canonic
CNF’s are
• neither canonic nor pre–canonic
• not 0–canonic
• 1–canonic

Proof
• [∨[∧A]] and [∨[∧AB][∧AB]] are equivalent DNF’s,

but they are neither equal, nor similar.
• [∨[∧A][∧A]] ⇔ [∨[∧]] ⇔ 1. Thus DNF’s are not

1–canonic.
• According to a theorem in chapter 2 it holds for

each DNF ∆ that ∆ ⇔ 0 iff ∆ = [∨]. Thus DNF’s
are 0–canonic.

Factors

Definition
• Let γ be a NLC and ∆ = [∨γ1...γn] a DNF. γ is

called a (disjunctive) factor or implicand of ∆,
iff γ ⇒ ∆. In other words, iff ∆ ⇔ [∨γγ1...γn].
In particular each component γi ∈ ∆ is a factor of
∆.

• Let δ be a NLD and Γ = [∧δ1...δn] a CNF. δ is
called a (conjunctive) factor or consequence
of Γ, iff Γ ⇒ δ. In other words, iff Γ ⇔ [∧δδ1...δn].
In particular each component δi ∈ Γ is a factor of
Γ.

Definition
• A factor γ of a DNF ∆ is prime, iff there is no

factor γ′ of ∆ with γ⇒̇γ′.
Thus “prime” means here not further reducible.
No literal can be deleted in γ such that γ is still a
factor of ∆.

• A factor δ of a CNF Γ is prime, iff there is no
factor δ′ of Γ with δ′⇒̇δ.
Again “prime” means here not further reducible.
For each NLD δ′ the case δ′ ⊂ δ would imply that
δ′ is not a factor of Γ.

Remark
• [∨] is the only DNF that has no factors.
• [∧] is the only CNF that has no factors.
• Every NLC γ is a factor of [∨[∧]].
• Every NLC δ is a factor of [∧[∨]].

Each DNF different to [∨] has infinitely many factors.
(The same holds for CNF’s.) This is because the DNF
would then at least have one component γ = [∧λ1...λn].
Every NLC of the form γ′ = [∧λ1...λnλn+1...λn+m] is

a factor of ∆ too, since γ′ ⇒ γ ⇒ ∆.
But although the number of factors is (almost) always
infinite, the number of prime factors is always finite,
as follows directly from the following

Theorem
• For each prime factor γ of a DNF ∆ holds:
At(γ) ⊆ At(∆).

• For each prime factor δ of a CNF Γ holds: At(δ) ⊆
At(Γ).

Proof
Again we only proof the first half of the theorem.
Let Γ = [∧[∨λ11...λ1m1]...[∨λn1...λnmn

]] be a CNF
equivalent to ∆ and let γ = [∧λ1...λl]. It holds
that γ is a factor of ∆ iff γ ⇒ ∆ iff [∧γ¬Γ] ⇔
0 iff [∧γ[∨[∧λ11...λ1m1]...[∧λn1...λnmn]]] ⇔ 0 iff
[∨[∧λ1...λlλ11...λ1m1]...[∧λ1...λlλn1...λnmn

]] ⇔ 0 iff
[∧λ1...λlλi1...λimi

] ⇔ 0 for each i = 1, ..., n iff
{λ1, ..., λl}∩{λi1, ..., λimi

} 6= {} for each i = 1, ..., n.
Suppose now At(γ) 6⊆ At(∆). So there must be a
literal in γ — let it be λ1 — such that |λ1| 6∈ At(∆).
But in that case {λ1, ..., λl} ∩ {λi1, ..., λimi} =
{λ2, ..., λl}∩{λi1, ..., λimi

} for each i = 1, ..., n. And
so [∧λ2...λl] would be a factor of ∆, too. But then γ
wouldn’t be a prime, and that would contradict the
initial assumption.

Corollary
The number of prime factors of a given DNF or CNF
is finite.

Prime Normal Forms

Definition
Suppose ϕ is a formula
• Let ∆ be any arbitrary DNF of ϕ and {γ1, ..., γn}

the set of all prime factors of ∆. We call ∆′ :=
[∨γ1...γn] a prime disjunctive normal form or
PDNF (of ϕ or of ∆).

• Let Γ be any arbitrary CNF of ϕ and {δ1, ..., δn}
the set of all prime factors of Γ. We call Γ′ :=
[∧δ1...δn] a prime conjunctive normal form or
PCNF (of ϕ or of Γ).

Each formula ϕ has a DNF ∆. The set of all prime
factor of ∆ is always finite and so the PDNF ∆′ is al-
ways well defined (up to the order of its components).
∆′ is uniquely defined, no matter which DNF ∆ of ϕ
was chosen.
Furthermore ∆′ ⇔ ∆, because:
• Each prime factor γi is a factor of ∆, thus γi ⇒ ∆

and ∆′ ⇒ ∆.
• Every component γ ∈ ∆ has a prime component

12

γi ∈ ∆′ such that γ ⇒ γi, and so ∆ ⇒ ∆′.

This proofs the following

Theorem
For each formula ϕ there is
• one (up to the order of its components) uniquely

defined PDNF ∆′ with ∆′ ⇔ ϕ, called the PDNF
of ϕ.

• one (up te the order of its components) uniquely
defined PCNF Γ′ with Γ′ ⇔ ϕ, called the PCNF
of ϕ.

In other words: PDNF’s and PCNF’s are pre–
canonic and the two according normalizers are well
defined.

Corollary
For each PDNF ∆
• ∆ ⇔ 0 iff ∆ = [∨]
• ∆ ⇔ 1 iff ∆ = [∨[∧]]
For each PCNF Γ
• Γ ⇔ 0 iff Γ = [∧[∨]]
• Γ ⇔ 1 iff Γ = [∧]

The next theorem about 0– and 1–ary DNF’s and
CNF’s, together with one about 2–ary forms stated
later on, will be the starting point for our algorithms
that can handle all n–ary formulas.

Theorem
• [∨] is a PDNF.
• [∧] is a PCNF.
• Every DNF [∨γ] with one component is a PDNF.
• Every CNF [∧δ] with one component is a PCNF.

This won’t need an explicit proof.

Syntactic measures

We will new seek for a precise concept of syntactic
“size” and propose two syntactic measures: length and
volume.

Definition
For a DNF ∆ = [∨[∧λ11...λ1n1]...[∧λm1...λmnm

]] we
put
• lg(∆) := m the length of ∆
• vol(∆) := n1 + n2 + ...+ nm the volume of ∆.
For a CNF Γ = [∧[∨λ11...λ1n1]...[∨λm1...λmnm]] we
put

• lg(Γ) := m the length of Γ
• vol(Γ) := n1 + n2 + ...+ nm the volume of Γ.

For example, for ∆ = [∨[∧ABC][∧ABC]] there is
lg(∆) = 2 and vol(∆) = 6.

Minimal Normal Forms

Definition
A DNF ∆ is said to be
• of minimal length, if there is no DNF ∆′ such

that ∆′ ⇔ ∆ and lg(∆′) < lg(∆)
• of minimal volume, if there is no DNF ∆′ such

that ∆′ ⇔ ∆ and vol(∆′) < vol(∆)
• a minimal disjunctive normal form or

MDNF, if ∆ is of minimal length and minimal
volume.

A CNF Γ is said to be
• of minimal length, if there is no CNF Γ′ such

that Γ′ ⇔ Γ and lg(Γ′) < lg(Γ)
• of minimal volume, if there is no CNF Γ′ such

that Γ′ ⇔ Γ and vol(Γ′) < vol(Γ)
• a minimal conjunctive normal form or

MCNF, if Γ is of minimal length and minimal
volume.

Remark
• In general, minimal length does not imply mini-

mal volume. If we take the following two DNF’s
as an example
• ∆1 = [∨[∧A][∧AB]]
• ∆2 = [∨[∧A][∧B]]
we can easily verify that they are equivalent
and both of minimal length, but obviously 2 =
vol(∆2) < vol(∆1) = 3.

• It remains an open question here if a minimal vol-
ume implies a minimal length.9

If γ is a component of a DNF ∆, but not prime, then
there must be a shorter factor γ′ of ∆. If ∆′ is ob-
tained from ∆ by replacing γ with γ′, then ∆′ ⇔ ∆
and vol(∆′) < vol(∆). So, if a DNF is minimal, all its
components must be prime factors.

Theorem
• All components of a MDNF are prime factors:

Let ∆m be a MDNF and ∆p a PDNF with ∆m ⇔
∆p, then ∆m ⊆ ∆p.

• All components of a MCNF are prime factors:

9I conjecture that this is actually the case: Normal forms of minimal volume are always of minimal length. If this wouldn’t be
correct, then there wouldn’t be a MDNF for every formula and thus MDNF’s wouldn’t make a proper set of normal forms. To
avoid this, we could have identified minimality with minimality of the volume. But eventually, only the MDNF’s of 0–,1–, and
2–ary DNF’s are of interest in our paper. And restricted to these cases the normalizer is well defined and even pre-canonic, as we
will see later on.

13

Let Γm be a MCNF and Γp a PCNF with Γm ⇔
Γp, then Γm ⊆ Γp.

For many formulas, the MDNF and PDNF are iden-
tic. [∨[∧A][∧B]] for instance is both a MDNF and a
PDNF.
But very often, they are differnt, as in the following
example of two equivalent forms:
• [∨[∧AB][∧BC]] is a MDNF
• [∨[∧AB][∧BC][∧AC]] is the PDNF

The last theorem indicates a method how MDNF’s can
be constructed: First, find all prime factors (later on we
introduce an algorithm that solves this problem). Then
find out which of the subsets of the PDNF still makes
an equivalent formula and select the best of them.
But, different to PDNF’s MDNF’s are not always
unique:

Theorem
• MDNF’s are not pre–canonic (thus not canonic),

but 0– and 1–canonic.
• MCNF’s are not pre–canonic (thus not canonic),

but 0– and 1–canonic.

Proof
• Both of the following DNF’s are minimal
• ∆1 = [∨[∧BC][∧BC][∧AB]]
• ∆2 = [∨[∧BC][∧BC][∧AC]]
and ∆1 ⇔ ∆2, but obviously not ∆1 ≈ ∆2. So,
MDNF’s are not (pre–)canonic.

• DNF’s are 0–canonic according to a theorem in
chapter 4 and as such MDNF’s are 0–canonic.

• All components of a MDNF ∆ are prime factors.
The only prime factor of a tautologic DNF is [∧].
So ∆ ⇔ 1 iff ∆ = [∨[∧]]. In other words, MDNF’s
are 1–canonic.

Theorem
• [∨] is a MDNF.
• [∧] is a MCNF.
• Every DNF [∨γ] with one component is a MDNF.
• Every CNF [∧δ] with one component is a MCNF.

So, altogether we have “DNF = PDNF = MDNF”, if
the length of the form doesn’t exceed 1.

Pairwise Minimal Normal Forms

In a later chapter we are going to proof that every 2–ary
DNF ∆ = [∨γLγR] has a (up to the order of the compo-
nents) unique MDNF ∆′, that has at least one and at
most two components. We will implement an algorithm
to construct ∆′ and we write it as min(γL, γR) = ∆′.

By definition the length (thus either 1 or 2) and the
volume of Γ′ are at most as big as the length (=2) and
volume of ∆.

This algorithm min can be used for the following
method to minimize pairwise, called the Minimizing
Procedure or the M–Procedure:
(i) Choose any two components γL and γR of a
given DNF ∆ and replace them by components of
min(γL, γR).
(ii) Repeat step (i) until every pair of components of
∆ is a MDNF.
M-Procedure (∆) shall denote the result.

An example: From a given DNF two components
are selected (indexed by the two underbraces), their
MDNF is computed and its components are inserted
into the DNF again (indexed by the one or two over-
braces).

[∨[∧ABC][∧AB][∧B] [∧C]︸︷︷︸ [∧C]︸︷︷︸]
min([∧C], [∧C]) = [∨[∧C]]

[∨ [∧ABC]︸ ︷︷ ︸ [∧AB]︸ ︷︷ ︸[∧B]
︷︸︸︷
[∧C]]

min([∧ABC], [∧AB]) = [∨[∧BC][∧AB]]

[∨
︷ ︸︸ ︷
[∧BC]︸ ︷︷ ︸ ︷ ︸︸ ︷

[∧AB] [∧B]︸︷︷︸[∧C]]

min([∧BC], [∧B]) = [∨[∧C][∧B]]

[∨
︷︸︸︷
[∧C]︸︷︷︸[∧AB]

︷︸︸︷
[∧B] [∧C]︸︷︷︸]

min([∧C], [∧C]) = [∨[∧]]

[∨
︷︸︸︷
[∧]︸︷︷︸ [∧AB]︸ ︷︷ ︸]

min([∧], [∧AB]) = [∨[∧]]

[∨
︷︸︸︷
[∧]︸︷︷︸ [∧B]︸︷︷︸]

14

min([∧], [∧B]) = [∨[∧]]

[∨
︷︸︸︷
[∧]]

Later on we implement an effective version of the M–
Procedure, in which the vague instruction “choose any
two components” in (i) and the test in (ii) are merged
into a single step.

Obviously this whole method is monotone shortening,
the DNF is constantly getting better in this respect.
One might be tempted to suggest that the finite result
is always a MDNF. It therefore might surprise that this
is very often the case indeed, but not always. And nei-
ther is the result a PDNF in general. Therefore we give
the forms that satisfy the terminating condition of the
method, an own title:

Definition
• A DNF ∆ = [∨γ1...γn] is called pairwise min-

imal or a M2DNF iff [∨γiγj] is minimal for all
i, j ∈ {1, ..., n} with i 6= j.

• A CNF Γ = [∧δ1...δn] is called pairwise mini-
mal or a M2CNF iff [∧δiδj] is minimal for all
i, j ∈ {1, ..., n} with i 6= j.

Theorem
• Every MDNF is a M2DNF.
• Not every M2DNF is a MDNF.
• Every PDNF is a M2DNF.
• Not every M2DNF is a PDNF
• Every MCNF is a M2CNF.
• Not every M2CNF is a MCNF.
• Every PCNF is a M2CNF.
• Not every M2CNF is a PCNF.

'

&

$

%

'

&

$

%

M2DNF

PDNF

MDNF

Proof

• Obviously, every MDNF is a M2DNF.
• ∆ = [∨[∧AB][∧BC][∧AC]] is an example for a

M2DNF that isn’t a MDNF. The MDNF of ∆ is
∆′ = [∨[∧A][∧BC]].

• Suppose there is a PDNF ∆ = [∨γ1...γn] that isn’t
a M2DNF. So there must be γi, γj ∈ ∆ such that
there is either a 1–ary DNF [∨γ′] ⇔ [∨γiγj] or a 2–
ary DNF [∨γ′iγ′j] ⇔ [∨γiγj] with γi⇒̇γ′i or γj⇒̇γ′j .
(We will show that in detail later on.). But that
would contradict the premise that γi and γj both
have to be prime factors of ∆.

• Again ∆ = [∨[∧AB][∧BC][∧AC]] is an example
for a M2DNF that isn’t a PDNF, which is again
∆′.

Theorem
• M2DNF’s are 0–canonic, but not 1–canonic and

thus not (pre–)canonic.
• M2CNF’s are 1–canonic, but not 0–canonic and

thus not (pre–)canonic.

Proof
DNF’s are 0–canonic in general, so are M2DNF’s.
∆ = [∨[∧]] and ∆′ = [∨ [∧BCD] [∧ACD] [∧ABC]
[∧ABC] [∧ABD] [∧BCD] [∧ACD] [∧ABD]] are
both tautologies and pairwise minimal, and so the
M2DNF’s are not 1–canonic.

Quality comparison

Let us now compare the three special types of DNF’s
according to the given criteria in the introduction.
• Intuitivity

PDNF’s have the big advantage against the other
two types that all factors can be read off directly
from the form, and thus all subvalent formulas be-
come directly identifiable, if they are given in DNF.10

In this respect, the PDNF’s are the most transparent
of all DNF’s.

• Canonicity
Of all three sets of DNF’s, only the PDNF’s are
canonic.

• Complexity of the representation
Actually all three types of normal forms are rela-
tively condensed — this goal was our initial starting
point. But the MDNF’s are the absolutely shortest
by definition. PDNF’s and M2DNF’s both allow ex-
amples for which one type is shorter than the other.11

• Computational complexity
Later on we are going to introduce an algorithm

10see next chapter about “covering”
11We already saw that a MDNF is always a subset of the equivalent PDNF. I conjecture that the MDNF is always at least half

as long as the PDNF. [Comment September 2002: Actually, this conjecture is not correct in general.]

15

of polynomial complexity to transform DNF’s into
M2DNF’s. We will extend this idea to build a
PDNF–normalizer. PDNF’s are very efficient for
the test on subvalence (see next chapter). Usually
MDNF’s are constructed out of PDNF’s and thus
MDNF’s have the highest computational costs.

• Conservativity
The transformation of an arbitrary formula into a
DNF usually changes the whole structure of the
form. A further reduction into one of the three spe-
cial DNF’s is, compare to that, very moderate.

• Realizability as technical devices
I suppose, this is the real domain for the MDNF’s.

Conclusion
M2DNF’s are not very interesting for practical appli-
cations. Nevertheless they are indispensable for the
theory and implementation of our PDNF system.

MDNF’s are only superior when the representational
complexity is the only and most important aspect.
There are established methods to construct MDNF’s
out of given PDNF’s and I wouldn’t know how to im-
prove them. Therefore we will neglect these forms in
the sequel.
PDNF’s are the only canonic forms. The rest of this
paper is devoted to the construction of an effective
PDNF system.

The analysis of the relation between two NLC’s stands
at the center of our method and therefore this inves-
tigation is a chapter on its own. Subsequently we
will first build a M2DNF and then a PDNF system.
But first of all we demonstate the subvalence test with
prime normal forms, that also provides us with a cri-
terion to decide between a PDNF and a PCNF system
in concrete applications.

16

5 Covering and Subvalence

Because the PDNF-normalizer is 1–canonic, it holds
for any two formulas ϕ1 and ϕ2 that

ϕ1 ⇒ ϕ2 iff pdnf([ϕ1 → ϕ2]) = [∨[∧]]
In this way it is possible to implement the subvalence
problem, i.e. the question, whether or not a formular
implies another one.
In actual applications it is very often the case that
one side is relatively constant (and then it is often
called “program”, “data bank”, “axiom system”, etc.),
while the other side (called “input”, “request”, etc.)
varies. We could name application systems of the sort
ϕconstant ⇒ ϕvariable “consequence systems” and
the others of the sort ϕvariable ⇒ ϕconstant “impli-
cand systems”.

For these two kind of systems there is a much more
efficient method for the subvalence problem than the
one just mentioned:
• For consequence systems we construct the PCNF

Γconstant of ϕconstant and a CNF Γvariable of ϕvariable

and we decide the truth of Γconstant ⇒ Γvariable by
using the following covering concept.

• Accordingly the application of DNF’s suits very well
for imlicand systems.

The “covering method” reduces the subvalence prob-
lem to the pairwise comparison of NLC’s (NLD’s) and
that doesn’t only accelerate the computer, it also sup-
ports the comprehension and mental arithmetic of for-
mulas. The semantic of prime normal forms is excep-
tionally intuitive.

We noticed earlier that:
• For any two NLC’s γ1 and γ2: γ1 ⇒ γ2 iff γ2 ⊆ γ1.
• For any two NLD’s δ1 and δ2: δ1 ⇒ δ2 iff δ1 ⊆ δ2.

Definition
For each NLC γ and DNF’s ∆ = [∨γ1...γn] and ∆′

we define:
• γ v ∆, γ is covered by ∆, iff there is a γi ∈ ∆

such that γ ⇒ γi.
• γ 6v ∆ iff γ is not covered by ∆.
• ∆ v ∆′, ∆ is covered by ∆′, iff γi v ∆′ for every
γi ∈ ∆.

• ∆ 6v ∆′ iff ∆ is not covered by ∆′.
For each NLD δ and CNF’s Γ = [∧δ1...δn] and Γ′ we
define:
• δ v Γ, δ is covered by Γ, iff there is a δi ∈ Γ such

that δi ⇒ δ.
• δ 6v Γ iff δ is not covered by Γ.
• Γ v Γ′, Γ is covered by Γ′, iff δi v Γ′ for every
δi ∈ Γ.

• Γ 6v Γ′ iff Γ is not covered by Γ′.

For DNF’s ∆ v ∆′ always implies ∆ ⇒ ∆′. But the
reverse is generally only the case if ∆′ is prime12.

Theorem
• Let ∆ be a DNF and ∆p a PDNF. Then ∆ ⇒ ∆p

iff ∆ v ∆p.
• Let Γp be a PCNF and Γ a CNF. Then Γp ⇒ Γ iff

Γ v Γp.

Proof
For ∆ = [∨γ1...γn] there is ∆ ⇒ ∆′ iff
[[∨γ1...γn] → ∆′] ⇔ 1 iff [∨[∧¬γ1...¬γn]∆′] ⇔ 1 iff
[∧[∨¬γ1∆′]...[∨¬γn∆′]] ⇔ 1 iff [∧[γ1 → ∆′]...[γn →
∆′]] ⇔ 1 iff γi ⇒ ∆′ for each i = 1, ..., n. Thus every
γi ∈ ∆ has to be a factor of ∆′. Since ∆′ contains
all prime factors, there must be a γ′j ∈ ∆′ for each
γi ∈ ∆ such that γi ⇒ γ′j . Thus γi v ∆′ for each
i = 1, ..., n and thus ∆ v ∆′.

Theorem
v is a quasi-order13 on the set of all DNF’s (CNF’s).

12More general, if ∆′ is “f–complete” (see below).
13reflexive and transitive

17

6 * Implementation of a fast
subvalence decision with
Prime Normal Forms

The following table of algorithms gives an example of
how these results can be implemented. It can later

be attached to the fully developed PDNF and PCNF
system.

The PDNF system: Declarations The PCNF system: Declarations

For NLC’s γ1 and γ2 For NLD’s δ1 and δ2
nlc–sub–nlc(γ1, γ2) =

{
0 if γ1 ; γ2
1 if γ1 ⇒ γ2

nld–sub–nld(δ1, δ2) =
{

0 if δ1 ; δ2
1 if δ1 ⇒ δ2

For a NLC γ and a DNF ∆ For a NLD δ and a CNF Γ

nlc–cov–dnf(γ, ∆) =
{

0 if γ 6v ∆
1 if γ v ∆ nld–cov–cnf(δ, Γ) =

{
0 if δ 6v Γ
1 if δ v Γ

For DNF’s ∆1 and ∆2 For CNF’s Γ1 and Γ2
dnf–cov–dnf(∆1, ∆2) =

{
0 if ∆1 6v ∆2
1 if ∆1 v ∆2

cnf–cov–cnf(Γ1, Γ2) =
{

0 if Γ1 6v Γ2
1 if Γ1 v Γ2

For a DNF ∆1 and a PDNF ∆2 For a PCNF Γ1 and a CNF Γ2
dnf–sub–pdnf(∆1, ∆2) =

{
0 if ∆1 ; ∆2
1 if ∆1 ⇒ ∆2

pcnf–sub–cnf(Γ1, Γ2) =
{

0 if Γ1 ; Γ2
1 if Γ1 ⇒ Γ2

The PDNF system: Implementations The PCNF system: Implementations

nlc–sub–nlc([∧λ1...λn], [∧λ′1...λ′m]) nld–sub–nld([∨λ1...λn], [∨λ′1...λ′m])

:=



1 if m = 0
0 if m > 0 and n = 0
nlc–sub–nlc([∧λ2...λn], [∧λ′1...λ′m]) if | λ1 |<| λ′1 |
0 if | λ′1 |<| λ1 |
nlc–sub–nlc([∧λ2...λn], [∧λ′2...λm]) if λ1 = λ′1
0 if λ1 = λ′1

:=



1 if n = 0
0 if n > 0 and m = 0
0 if | λ1 |<| λ′1 |
nld–sub–nld([∨λ1...λn], [∨λ′2...λ′m]) if | λ′1 |<| λ1 |
nld–sub–nld([∨λ2...λn], [∨λ′2...λm]) if λ1 = λ′1
0 if λ1 = λ′1

nlc–cov–dnf(γ, [∨γ1...γn]) nld–cov–cnf(δ, [∧δ1...δn])

:=

 0 if n = 0
1 if nlc–sub–nlc(γ, γ1) = 1
nlc–cov–dnf(γ, [∨γ2...γn]) if nlc–sub–nlc(γ, γ1) = 0

:=

 0 if n = 0
1 if nld–sub–nld(δ1, δ) = 1
nld–cov–cnf(δ, [∧δ2...δn]) if nld–sub–nld(δ1, δ) = 0

dnf–cov–dnf([∨γ1...γn], ∆) cnf–cov–cnf([∧δ1...δn], Γ)

:=

 1 if n = 0
0 if nlc–cov–dnf(γ1, ∆) = 0
dnf–cov–dnf([∨γ2...γn], ∆) if nlc–cov–dnf(γ1, ∆) = 1

:=

 1 if n = 0
0 if nld–cov–cnf(δ1, Γ) = 0
cnf–cov–cnf([∧δ2...δn], Γ) if nld–cov–cnf(δ1, Γ) = 1

dnf–sub–pdnf(∆1, ∆2) pcnf–sub–cnf(Γ1, Γ2)
:= dnf–cov–dnf(∆1, ∆2) := cnf–cov–cnf(Γ1, Γ2)

18

7 Component pairs

In this chapter we will construct an algorithm that de-
termines the MDNF and the PDNF of a 2-ary DNF
[∨γLγR].14 Both do exist and they are unique (up to
the order of their components.)

First we introduce a special notation for a literal con-
junction that might not be normal yet, but doesn’t
contain doubles or complementary literals, and thus
can easily be normalized by changing the order of the
components:

Notation
Let [∧λ1...λn] be a literal conjunction and i :
{1, ..., n} −→ {1, ..., n} a bijection such that
[∧λi(1)...λi(n)] is a NLC. (Note that this bijection
is unique if it exists.) We then write

[∧̇λ1...λn] := [∧λi(1)...λi(n)]

Definition
Let
• γL = [∧λ1...λx] be a NLC
• γR = [∧λ′1...λ′y] be a NLC
We define the following sets (the order of the ele-
ments is of no interest here):
• {π1, ..., πp} := {λ1, ..., λx} ∩ {λ′1, ..., λ′y}
• {ρ1, ..., ρr} := {λ1, ..., λx} ∩ {λ′1, ..., λ′y}
• {σ1, ..., σs} := {λ1, ..., λx} − {λ′1, ..., λ′y, λ′1, ..., λ′y}
• {τ1, ..., τt} := {λ′1, ..., λ′y} − {λ1, ..., λx, λ1, ..., λx}
Thus
• γL = [∧̇π1...πpρ1...ρrσ1...σs]
• γR = [∧̇π1...πpρ1...ρrτ1...τt]
We define
• min(γL, γR)
• prim(γL, γR)
according to the following table, depending on the
values of p, r, s, and t. In this table we use the ab-
breviations15

• “N” for any Number, i.e. ≥ 0
• “P” for Positive, i.e. ≥ 1

• “M” for Multiple, i.e. > 1

Without its long and non–informative proof we state
the following

Theorem
• min(γL, γR) is the (up to the order of its compo-

nents) uniquely defined MDNF of [∨γLγR].
• prim(γL, γR) is the (up to the order of its compo-

nents) uniquely defined PDNF of [∨γLγR].

Example
γL := [∧ABDEGK]
γR := [∧ABCEHIJKL]
For these two NLC’s we have
{π1, ..., πp} = {A,K} thus p = 2
{ρ1, ..., ρr} = {B,E} thus r = 2
{σ1, ..., σs} = {D,G} thus s = 2
{τ1, ..., τt} = {C,H, I, J, L} thus t = 5
This is the case “NMNN”in the table and so
min(γL, γR) = prim(γL, γR) = [∨γLγR].

We can see in the table that the number p of literals
that occur both in γL and in γR, doesn’t have any in-
fluence on the MDNF and PDNF solution, while the
number r of literals that occur in γL and complemented
in γR is very decisive. Therefore we call [∨γLγR] or the
relation between γL and γR

• incomplementary, if r = 0
• complementary, if r = 1
• hyper–complementary if r > 1.

Furthermore we call [∨γLγR] (or γL and γR) minimal,
iff min(γL, γR) = [∨γLγR].
As the table shows, this is exactly the case when

r > 1 or (s > 0 and t > 0).
In case γL and γR are complementary and minimal —
and only in this case — the PDNF and the MDNF of
[∨γL, γR] are different: the PDNF contains one addi-
tional prime factor. We call it the complementary
prime factor or shorter the c–prime factor of γL

and γR (or [∨γLγR]).

14The subscripts “L” and “R” stand for “left” and “right”.
15We introduce these symbols, because in later algorithms we will make use the case symbols “N000”, “N00P”, ..., “NMNN”as

identification symbols for the nine different cases.

19

p r s t γL γR min (γL, γR) prim (γL, γR)

N 0 0 0 [∧̇π1...πp] [∧̇π1...πp] [∨γL] = [∨γR] [∨γL] = [∨γR]

N 0 0 P [∧̇π1...πp] [∧̇π1...πpτ1...τt] [∨γL] [∨γL]

N 0 P 0 [∧̇π1...πpσ1...σs] [∧̇π1...πp] [∨γR] [∨γR]

N 0 P P [∧̇π1...πpσ1...σs] [∧̇π1...πpτ1...τt] [∨γLγR] [∨γLγR]

N 1 0 0 [∧̇π1...πpρ1] [∧̇π1...πpρ1] [∨γ′] with [∨γ′] with
γ′ := [∧̇π1...πp] γ′ := [∧̇π1...πp]

N 1 0 P [∧̇π1...πpρ1] [∧̇π1...πpρ1τ1...τt] [∨γLγ′R] with [∨γLγ′R] with
γ′R := [∧̇π1...πpτ1...τt] γ′R := [∧̇π1...πpτ1...τt]

N 1 P 0 [∧̇π1...πpρ1σ1...σs] [∧̇π1...πpρ1] [∨γ′LγR] with [∨γ′LγR] with
γ′L := [∧̇π1...πpσ1...σs] γ′L := [∧̇π1...πpσ1...σs]

N 1 P P [∧̇π1...πpρ1σ1...σs] [∧̇π1...πpρ1τ1...τt] [∨γLγR] [∨γLγRγc] with
γc := [∧̇π1...πpσ1...σsτ1...τt]

the c–prime factor

N M N N [∧̇π1...πpρ1...ρrσ1...σs] [∧̇π1...πpρ1...ρrτ1...τt] [∨γLγR] [∨γLγR]

20

8 * Implementation: Minimal
and Prime Normal Forms of
component pairs

The implementation of the two functions min(γL, γR)
and prim(γL, γR) could be straightforward: first,
determine the four sets {π1, ..., πp}, {ρ1, ..., ρr},
{σ1, ..., σs}, and {τ1, ..., τt}. Then, look up the case
and the according instruction in the table and finally
construct the formula. But we are eager to create a fast
system. min is the core of the M2DNF system, prim
will be the most often applied function in the PDNF
system.

In fact, the algorithms will not use min and
prim, but the “extended” versions xmin and
xprim, where xmin(γL, γR) := (ξ,min(γL, γR)) and
xprim(γL, γR) := (ξ, prim(γL, γR)) and ξ is the case

symbol, i.e. the abbreviations for the numbers of
p,r,s, and t in the table.

Example
For γL = [∧ABDF] and γR = [∧BC] there are
• xmin (γL, γR) = (“N1PP”, [∨[∧ABDF][∧BC]])
• xprim (γL, γR) = (“N1PP”, [∨ [∧ABDF] [∧BC]

[∧ACDF]])

For the implementation of xprim we use the auxiliary
recursive function xprec. xprec terminates as soon as
the case is clear, and that is mainly what makes it
faster than the straightforward version. xprec is not
the only version that would do the job, we don’t need
to discuss it and the reader is free to use an own ver-
sion.
The duality allows us to formulate xprec for DNF’s and
CNF’s together and we use ∗ as the junctor symbol and
∗ for the dual junctor.

Disjunctive component pairs: Declarations Conjunctive component pairs: Declarations

prim(γL, γR) prim(δL, δR)
is the PDNF of [∨γLγR], for any two NLC’s γL and γR is the PCNF of [∧δLδR], for any two NLD’s δL and δR

min(γL, γR) min(δL, δR)
is the MDNF of [∨γLγR], for any two NLC’s γL and γR is the MCNF of [∧δLδR], for any two NLD’s δL and δR

xprim(γL, γR) xprim(δL, δR)
:= (ξ, prim(γL, γR)) where ξ is the case symbol according to the table in
chapter 7

:= (ξ, prim(δL, δR)) where ξ is the case symbol according to the table in
chapter 7

xmin(γL, γR) xmin(δL, δR)
:= (ξ, min(γL, γR)) where ξ is the case symbol according to the table in
chapter 7

:= (ξ, min(δL, δR)) where ξ is the case symbol according to the table in
chapter 7

Disjunctive component pairs: Implementations Conjunctive component pairs: Implementations

xprim(γL, γR) xprim(δL, δR)

:= xprec([∧], γL, [∧], γR, [∧], [∧], [∧], 0, 0, 0) := xprec([∨], δL, [∨], δL, [∨], [∨], [∨], 0, 0, 0)

prim(γL, γR) prim(δL, δR)

:= ∆, where ∆ is defined by (ξ, ∆) := xprim(γL, γR) := Γ, where Γ is defined by (ξ, Γ) := xprim(δL, δR)

xmin(γL, γR) xmin(δL, δR)

:= (ξ, ∆′) defined by (ξ, ∆) := xprim(γL, γR) and := (ξ, Γ′) defined by (ξ, Γ) := xprim(δL, δR) and

∆′ :=
{

∆ if lg(∆) ∈ {1, 2}
[∨γL, γR] if lg(∆) = 3 Γ′ :=

{
Γ if lg(Γ) ∈ {1, 2}
[∧δL, δR] if lg(Γ) = 3

min(γL, γR) min(δL, δR)

:= ∆, where ∆ is defined by (ξ, ∆) := xmin(γL, γR) := Γ, where Γ is defined by (ξ, Γ) := xmin(δL, δR)

Auxiliary algorithms

∗ :=
{
∨ if ∗ = ∧
∧ if ∗ = ∨

}
for ∗ ∈ {∧,∨}

algorithm xprec ([∗λ1...λi], [∗λi+1...λx], [∗λ′1...λ′j], [∗λ′j+1...λ′y], [∗π1...πa], [∗π′1...π′b], [∗π′′1 ...π′′c], r, s, t)

begin

if r > 1

then (“NMNN”, [∗[∗λ1...λiλi+1...λx][∗λ′1...λ′jλ′j+1...λ′y]])

else if x = i

then if r = 0

then if s = 0

21

then if (j = y and t = 0)

then (“N000”, [∗[∗λ1...λi]])

else (“N00P”, [∗[∗λ1...λi]])

else if (j = y and t = 0)

then (“N0P0”, [∗[∗λ′1...λ′j]])

else (“N0PP”, [∗[∗λ1...λi][∗λ′1...λ′jλ′j+1...λ′y]])

else if s = 0

then if (j = y and t = 0)

then (“N100”, [∗[∗π1...πa]])

else (“N10P”, [∗[∗λ1...λi][∗π′1...π′bλ′j+1...λ′y]])

else if (j = y and t = 0)

then (“N1P0”, [∗[∗π1...πa][∗λ′1...λ′jλ′j+1...λ′y]])

else (“N1PP”, [∗[∗λ1...λi][∗λ′1...λ′jλ′j+1...λ′y][∗π′′1 ...π′′c λ′j+1...λ′y]])

else if j = y

then if r = 0

then if t = 0

then (“N0P0”, [∗[∗λ′1...λ′j]])

else (“N0PP”, [∗[∗λ1...λiλi+1..λx][∗λ′1...λ′j]])

else if t = 0

then (“N1P0”, [∗[∗π1...πaλi+1...λx][∗λ′1...λ′j]])

else (“N1PP”, [∗[∗λ1...λiλi+1...λx][∗λ′1...λ′j][∗π′′1 ...π′′c λi+1...λx]])

else if |λi+1| < |λ′j+1|

then xprec ([∗λ1...λiλi+1], [∗λi+2...λx], [∗λ′1...λ′j], [∗λ′j+1...λ′y], [∗π1...πaλi+1], [∗π′1...π′b], [∗π′′1 ...π′′c λi+1], r, s + 1, t)

else if |λ′j+1| < |λi+1|

then xprec ([∗λ1...λi], [∗λi+1...λx], [∗λ′1...λ′jλ′j+1], [∗λ′j+2...λ′y], [∗π1...πa], [∗π′1...π′bλ′j+1], [∗π′′1 ...π′′c λ′j+1], r, s, t + 1)

else if λi+1 = λj+1

then xprec ([∗λ1...λiλi+1], [∗λi+2...λx], [∗λ′1...λ′jλ′j+1], [∗λ′j+2...λ′y], [∗π1...πaλi+1], [∗π′1...π′bλ′j+1], [∗π′′1 ...π′′c λ′j+1], r, s, t)

else xprec ([∗λ1...λi], [∗λi+2...λx], [∗λ′1...λ′j], [∗λ′j+2...λ′y], [∗π1...πa], [∗π′1...π′b], [∗π′′1 ...π′′c], r + 1, s, t)

end.

22

9 The M–Procedure

We already mentioned the M-Procedure:
Given a DNF ∆, then
(i) Choose any two components γL and γR of ∆ and
replace them by the components of min (γL, γR).
(ii) Repeat step (i) until every pair of components of
∆ is minimal.
M–Procedure (∆) shall denote the final result.

The result M-Procedure (∆) is not uniquely defined.
Depending on how the instruction “Choose any two
components ...” is implemented, the result can be dif-
ferent (i.e. not equal and not similar), as the following
example demonstrates. This shows again that the set
of M2DNF’s is not (pre-)canonic.

Example
First version:

∆ = [∨ [∧ABC]︸ ︷︷ ︸ [∧ABC]︸ ︷︷ ︸[∧ABC][∧ABC]]

min([∧ABC], [∧ABC]) = [∨[∧AB]]

[∨
︷ ︸︸ ︷
[∧AB] [∧ABC]︸ ︷︷ ︸ [∧ABC]︸ ︷︷ ︸]

min([∧ABC], [∧ABC]) = [∨[∧BC]]

[∨[∧AB]
︷ ︸︸ ︷
[∧BC]] =: ∆1

Second version:

∆ = [∨ [∧ABC]︸ ︷︷ ︸ [∧ABC]︸ ︷︷ ︸[∧ABC][∧ABC]]

min([∧ABC], [∧ABC]) = [∨[∧AB]]

[∨
︷ ︸︸ ︷
[∧AB]︸ ︷︷ ︸ [∧ABC]︸ ︷︷ ︸[∧ABC]]

min([∧AB], [∧ABC]) = [∨[∧AB][∧AC]]

[∨
︷ ︸︸ ︷
[∧AB]

︷ ︸︸ ︷
[∧AC]︸ ︷︷ ︸ [∧ABC]︸ ︷︷ ︸]

min([∧AC], [∧ABC]) = [∨[∧AC][∧BC]]

[∨[∧AB]
︷ ︸︸ ︷
[∧AC]

︷ ︸︸ ︷
[∧BC]] =: ∆2

Depending on the order in which the components are
chosen, the result of M–Procedure (∆) is ∆1 in the first
version and ∆2 in the second version, with ∆1 6≈ ∆2.
(By the way, ∆1 is the MDNF and ∆2 is the PDNF of
∆.)

23

10 * Implementation of the M–
Procedure

Notation
Let ∆ = [∨γ1...γn] and ∆′ = [∨γ′1...γ′m] be two
DNF’s. We define

∆ ∨∆′ := [∨γ1...γnγ
′
1...γ

′
m]

Accordingly we write ∆1∨ ...∨∆d for more than two
DNF’s.

We are going to create the recursive algorithm mrec
to implement the M–Procedure.
Let ∆ be an arbitrary DNF that is going to be tans-
formed into a M2DNF.
First of all we split ∆ into two DNF’s

∆︷ ︸︸ ︷
[∨........]︸ ︷︷ ︸

∆0

∨ [∨........]︸ ︷︷ ︸
Ψ2

called ∆0 and Ψ2, so ∆ = ∆0 ∨Ψ2. In particular
• ∆0 is the part of ∆ that isn’t pairwise minimal yet,

while
• Ψ2 is the part of ∆, that is already a M2DNF.

At the beginning, of course there is
• ∆0 = ∆
• Ψ2 = [∨]

As the procedure proceeds we attempt to increase Ψ2,
while ∆0 is getting smaller, until finally ∆0 = [∨] and
Ψ2 is returned as the result of the procedure. There-
fore in each single step we take the first component
γ1 of ∆0 and for every component µi of Ψ2 we mini-
mize by means of min(γ1, µi). We further split Ψ2 into
Ψ2 = ∆1 ∨∆2 where
• ∆1 is the part of Ψ2 that already is a M2DNF to-

gether with γ1 (we call it Ψ1) and
• ∆2 is the remaining part of Ψ2.

∆︷ ︸︸ ︷
[∨

Ψ1︷︸︸︷
γ1 γ2...γc]︸ ︷︷ ︸

∆0

∨ [∨
Ψ1︷ ︸︸ ︷

µ1...µn]︸ ︷︷ ︸
∆1

∨ [∨µn+1...µn+m]︸ ︷︷ ︸
∆2︸ ︷︷ ︸

Ψ2

At the beginning of this inner loop we initialize
• ∆1 := [∨]
• ∆2 := Ψ2

When we continue and if we reach ∆2 = [∨], we put
Ψ2 := [∨γ1] ∨Ψ2 and erase γ1 from ∆0.
In the following full definition of mrec it is important

to note that
• at each step the conditions for Ψ1 and Ψ2 are satis-

fied
• the whole expression ∆ = ∆0∨∆1∨∆2 is constantly

getting shorter, or it remains the same while Ψ1 or
Ψ2 is increasing

so that finally Ψ2 is returned as the M2DNF of ∆.

Definition and theorem
Let
• ∆0 = [∨γ1...γc] be a DNF with c ≥ 0
• ∆1 = [∨µ1...µn] be a M2DNF with n ≥ 0
• ∆2 = [∨µn+1...µn+m] be a M2DNF with m ≥ 0
such that

• Ψ1 :=
{

[∨µ1...µn] if c = 0
[∨γ1µ1...µn] if c > 0

}
is a M2DNF

• Ψ2 := ∆1 ∨ ∆2 = [∨µ1...µnµn+1...µn+m] is a
M2DNF.

Then we define
mrec (∆0,∆1,∆2)

according to the table at the end of this chapter.
Then it holds that
• mrec (∆0,∆1,∆2) ⇔ ∆0 ∨∆1 ∨∆2

• mrec (∆0,∆1,∆2) is a M2DNF.

The definition of mrec immediately allows to de-
rive:
• An implementation of the M–Procedure:

Definition
M–Procedure (∆) := mrec (∆, [∨], [∨])
for every DNF ∆.

Theorem
M–Procedure (∆) is a M2DNF of ∆, for every DNF
∆.

• A M2DNF normalizer:
Definition

m2dnf (ϕ) := M–Procedure (dnf (ϕ))
for every formula ϕ

Theorem
m2dnf (ϕ) is a M2DNF of ϕ, for every formula ϕ.

• A special fast disjunctor:
Definition

dnf–or–m2dnf (∆1,∆2) := mrec (∆1, [∨],∆2)
for every DNF ∆1 and M2DNF ∆2.

Theorem
dnf–or–m2dnf (∆1,∆2) is a M2DNF of ∆1 ∨ ∆2,
for every DNF ∆1 and M2DNF ∆2.

Proof of the correctness of mrec

We want to proof that mrec is well defined and does ex-
actly what is told. This proof actually comprises four

24

parts:
(I) mrec is well–defined: in any case the recursion calls
itself, the conditions of the definition must hold.
(II) mrec terminates: the algorithm has to terminate
after a finite number of steps for every permitted in-
put.
(III) mrec (∆0,∆1,∆2) is a M2DNF.
(IV) mrec (∆0,∆1,∆2) ⇔ ∆0 ∨∆1 ∨∆2

When we start with ∆0
0 := ∆0, ∆0

1 := ∆1, and
∆0

2 := ∆2, the application of mrec initiates a sequence
mrec (∆0

0,∆
0
1,∆

0
2)

= mrec (∆1
0,∆

1
1,∆

1
2)

= mrec (∆2
0,∆

2
1,∆

2
2)

= ...
= mrec (∆i

0,∆
i
1,∆

i
2)

= mrec (∆i+1
0 ,∆i+1

1 ,∆i+1
2)

= ...

For the proof of (I) we will need two lemmas, where
the first one was mentioned earlier, and the second one
is quite obvious:
Lemma 1 Every DNF of length 0 or 1 is a M2DNF.
Lemma 2 If Ψ ⊂ Ψ′ and Ψ′ is a M2DNF, so is Ψ.

(I) Proof that mrec is well–defined

Each step of the recursion has the general form
mrec (∆i

0,∆
i
1,∆

i
2)

=
{

∆i
1 ∨∆i

2 in case (1)
mrec (∆i+1

0 ,∆i+1
1 ,∆i+1

2) in case (2) or (3.x)
We need to show by induction that the recursion step
i + 1 is well defined, in other words that the condi-
tions for Ψi+1

1 and Ψi+1
2 of the definition are met. In

particular we have:

(2) Ψi+1
1 =

{
[∨] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma 1)
Ψi+1

2 = [∨γ1µ1...µn] = Ψi
2 is a M2DNF (induc-

tion)

(3.1) Ψi+1
1 =

{
[∨] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma 1)
Ψi+1

2 = [∨µ1...µnµn+1...µn+m] = Ψi
2 is a

M2DNF (induction)

(3.2) Ψi+1
1 =

 [∨] if c = 1 and m = 1
[∨µn+2] if c = 1 and m > 1
[∨γ2] if c > 1

 is

a M2DNF (Lemma 1)
Ψi+1

2 = [∨γ1µ1...µn] = Ψi
1 is a M2DNF (induc-

tion)

(3.3) Ψi+1
1 =

{
[∨] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma 1)
Ψi+1

2 = [∨µ1...µnµn+1...µn+m] = Ψi
2 is a

M2DNF (induction)
(3.4) Ψi+1

1 = [∨γ1µ1...µnµn+1] is a M2DNF because
[∨γ1µ1...µn] = Ψi

1 is a M2DNF (induction),
[∨µ1...µnµn+1] ⊆ Ψi

2 is a M2DNF (Lemma 2)
and [∨γ1µn+1] is minimal. Ψi+1

2 = Ψi
2 is a

M2DNF (induction).

(3.5) Ψi+1
1 =

{
[∨] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma2)
Ψi+1

2 ⊆ Ψi
2 is a M2DNF (Lemma 2)

(3.6) Ψi+1
1 =

{
[∨γ′1] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma 1)
Ψi+1

2 = [∨γ1µ1...µn] = Ψi
1 is a M2DNF (induc-

tion)

(3.7) Ψi+1
1 =

{
[∨γ′1] if c = 1
[∨γ2] if c > 1

}
is a M2DNF

(Lemma 1)
Ψi+1

2 = Ψi
1 is a M2DNF (induction)

(3.8) same as (3.4)
(3.9) same as (3.4)

Thus, mrec is well–defined.

(II) Proof that mrec terminates

We define the following strict order16 � on the set of
all DNF triples:

(∆0,∆1,∆2) � (∆′
0,∆

′
1,∆

′
2)

iff



vol (∆′
0 ∨∆′

1 ∨∆′
2) < vol (∆0 ∨∆1 ∨∆2)

or vol (∆′
0 ∨∆′

1 ∨∆′
2) = vol (∆0 ∨∆1 ∨∆2)

and
lg (∆′

0) < lg (∆0)


or

vol (∆′
0 ∨∆′

1 ∨∆′
2) = vol (∆0 ∨∆1 ∨∆2)

and
lg (∆′

0) = lg (∆0)
and

lg (∆′
2) < lg (∆2)




Obviously, every chain
(∆0

0,∆
0
1,∆

0
2) � (∆1

0,∆
1
1,∆

1
2) � ... � (∆i

0,∆
i
1,∆

i
2) � ...

has to terminate. And because the following table
shows that

(∆i
0,∆

i
1,∆

i
2) � (∆i+1

0 ,∆i+1
1 ,∆i+1

2)
indeed for every i for which the triple i+ 1 is defined,

16asymmetric and transitive

25

we have proven that mrec (∆0,∆1,∆2) terminates for
every permitted input.

Case vol (∆i+1
0 ∨∆i+1

1 ∨∆i+1
2) lg (∆i+1

0) lg (∆i+1
2)

(2) vol (∆i
0 ∨∆i

1 ∨∆i
2) lg (∆i

0) − 1 —

(3.1) vol (∆i
0 ∨∆i

1 ∨∆i
2) − lg (γ1) — —

with lg (γ1) > 0

(3.2) vol (∆i
0 ∨∆i

1 ∨∆i
2) − lg (µn+1) — —

with lg (µn+1) > 0

(3.3) vol (∆i
0 ∨∆i

1 ∨∆i
2) − lg (γ1) — —

with lg (γ1) > 0

(3.4) vol (∆i
0 ∨∆i

1 ∨∆i
2) lg (∆i

0) lg (∆i
2) − 1

(3.5) vol (∆i
0 ∨∆i

1 ∨∆i
2) − lg (γ1) − 1 — —

(3.6) vol (∆i
0 ∨∆i

1 ∨∆i
2) − 1 — —

(3.7) vol (∆i
0 ∨∆i

1 ∨∆i
2) − 1 — —

(3.8) vol (∆i
0 ∨∆i

1 ∨∆i
2) lg (∆i

0) lg (∆i
2) − 1

(3.9) vol (∆i
0 ∨∆i

1 ∨∆i
2) lg (∆i

0) lg (∆i
2) − 1

(III) Proof that mrec (∆0,∆1,∆2) is a M2DNF

The algorithm terminates if and only if ∆0 = [∨]. And
then it returnes ∆1 ∨∆2 =: Ψ2 which is a M2DNF.

(IV) Proof that mrec (∆0,∆1,∆2) ⇔ ∆0 ∨∆1 ∨∆2

In each recursion step the components only change
their order or they are replaced by equivalent compo-
nents. All these operations don’t change the semantic.

end of proof.

26

mrec ([∨γ1...γc], [∨µ1...µn], [∨µn+1...µn+m])

:=



[∨µ1...µnµn+1...µn+m] if c = 0 (1)

mrec ([∨γ2...γc], [∨], [∨γ1µ1...µn]) if c > 0 and m = 0 (2)

mrec ([∨γ2...γc], [∨], [∨µ1...µnµn+1...µn+m]) if c > 0 and m > 0 and (3.1)
xmin (γ1, µn+1) = (“N000”, [∨µn+1])

mrec ([∨γ2...γcµn+2...µn+m], [∨], [∨γ1µ1...µn]) if c > 0 and m > 0 and (3.2)
xmin (γ1, µn+1) = (“N00P”, [∨γ1])

mrec ([∨γ2...γc], [∨], [∨µ1...µnµn+1...µn+m]) if c > 0 and m > 0 and (3.3)
xmin (γ1, µn+1) = (“N0P0”, [∨µn+1])

mrec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m]) if c > 0 and m > 0 and (3.4)
xmin (γ1, µn+1) = (“N0PP”, [∨γ1µn+1])

mrec ([∨γ2...γcγ
′], [∨], [∨µ1...µnµn+2...µn+m]) if c > 0 and m > 0 and (3.5)

xmin (γ1, µn+1) = (“N100”, [∨γ′])

mrec ([∨γ2...γcµ
′
n+1µn+2...µn+m], [∨], [∨γ1µ1...µn]) if c > 0 and m > 0 and (3.6)

xmin (γ1, µn+1) = (“N10P”, [∨γ1µ
′
n+1])

mrec ([∨γ2...γcγ
′
1], [∨], [∨µ1...µnµn+1...µn+m]) if c > 0 and m > 0 and (3.7)

xmin (γ1, µn+1) = (“N1P0”, [∨γ′
1µn+1])

mrec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m]) if c > 0 and m > 0 and (3.8)
xmin (γ1, µn+1) = (“N1PP”, [∨γ1µn+1])

mrec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m]) if c > 0 and m > 0 and (3.9)
xmin (γ1, µn+1) = (“NMNN”, [∨γ1µn+1])

27

11 The completeness theorem
and the P–Procedure

The completeness theorem

The M–Procedure generates a M2DNF of a given DNF.
But actually we are much more interested in a P–
Procedure to derive the PDNF. In this chapter we
will formulate the completeness theorem that gives
us necessary and sufficient criteria for which a M2DNF
is a PDNF by means of the covering concept, and that
will be the foundation for the P–Procedure.

Definition
A DNF ∆ is called factor complete or f–
complete, iff γ v ∆ for every factor γ of ∆.
In other words, ∆ is f–complete iff every prime factor
of ∆ is a component of ∆ (i.e. ∆p ⊆ ∆ where ∆p is
the PDNF of ∆).

Examples
• [∨] is f–complete in a trivial way, because it has

no factor.
• [∨[∧]] is f–complete, because every NLC γ is a fac-

tor, γ ⇒ [∧] and so γ v [∨[∧]].

Definition
For a DNF ∆ we define CPrimes(∆) to be the DNF
which components are the c–prime factors of all the
complementary and minimal pairs of components of
∆. Thus:17

Algorithm CPrimes([∨γ1...γn])
begin

∆′ := [∨] ;
for i := 1 to n− 1 do

for j := i+ 1 to n do
if [∨γiγj] is complementary minimal with the

c–prime factor γ′

then ∆′ := ∆′ ∨ [∨γ′] ;
return ∆′ ;

end.

Example
∆ = [∨[∧AB][∧BC][∧AC]] contains three pairs
of components that are complementary minimal,
namely
• [∧AB] and [∧BC]. Their c–prime factor is [∧AC].
• [∧AB] and [∧AC] with c–prime factor [∧BC].
• [∧BC] and [∧AC] with c–prime factor [∧AB].
So CPrimes(∆) = [∨[∧AC][∧BC][∧AB]]

Definition
A DNF ∆ is said to be complementary prime
complete or c–complete iff CPrimes(∆) v ∆.

Example
Again let ∆ = [∨[∧AB][∧BC][∧AC]]. ∆ is
not c–complete because, for example [∧AC] ∈
CPrimes(∆), but [∧AC] 6v ∆ and thus
CPrimes(∆) 6v ∆.

Theorem
Every f–complete DNF is c–complete.

Proof
Easy, since every c–prime factor of a pair of comple-
mentary minimal components is a factor.

Corollary
• [∨] and [∨[∧]] are c–complete.
• Every PDNF is c–complete.

Now we are able to state the central completeness the-
orem:

Theorem (Completeness)
For every DNF ∆ the following statements are equiv-
alent
(i) ∆ is a PDNF
(ii) ∆ is a f–complete M2DNF
(iii) ∆ is a c–complete M2DNF

To proof this, we first proof two lemmata:

Lemma 1
For every DNF ∆ and NLC γ with At (∆) ⊆ At (γ)
there is γ ⇒ ∆ iff γ v ∆.

Proof
Let γ′ ∈ ∆. With At (∆) ⊆ At (γ) we have
At (γ′) ⊆ At (γ). So there are exactly two differ-
ent possibilities:
• either γ′ ⊆ γ, and then γ ⇒ γ′, and so γ v ∆
• or γ′ 6⊆ γ, and then there must be (at least) one

literal λ ∈ γ′ with λ ∈ γ, so that [∧γγ′] ⇔ 0
We can now proof that γ ⇒ ∆ iff γ v ∆
• Suppose that γ ⇒ ∆. Because γ < 0 for every

NLC γ, there must be at least one γ′ ∈ ∆ such
that [∧γγ′] < 0. But this implies that γ′ ⊆ γ and
γ v ∆.

• Suppose that γ v ∆. Then there is a γ′ ∈ ∆ with
γ ⇒ γ′ by definition, and so γ ⇒ γ′ ⇒ ∆.

Thus: γ ⇒ ∆ iff γ v ∆.

17Again ∆1 ∨∆2 denotes the simple concatenation of two DNF’s.

28

Lemma 2
If ∆ is a c–complete M2DNF and γ a factor of ∆,
then γ v ∆.

Proof
Suppose γ = [∧λ1...λn]. We put {α1, ..., αa} :=
At (∆) − At (γ). (The α1,...,αa are uniquely de-
fined if we demand that α1 < ... < αa. But in fact
their order is of no importance here.)
We are going to proof that γ v ∆ by induction on
a.
• Suppose a = 0.

Then At (∆) ⊆ At (γ). And since γ is a factor and
γ ⇒ ∆, there is γ v ∆ according to lemma 1.

• Suppose a > 0.
We put γ0 := [∧̇λ1...λnα1] and γ1 := [∧̇λ1...λnα1]
so that γ = [∧λ1...λn] ⇔ [∨γ0γ1]. By virtue of
the induction it holds that γ0 v ∆ and γ1 v ∆.
So there must be γ′0, γ

′
1 ∈ ∆ such that γ0 ⇒ γ′0

(i.e. γ′0 ⊆ γ0) and γ1 ⇒ γ′1 (i.e. γ′1 ⊆ γ1). We
distinguish the following three cases:
• First case: α1 6∈ γ′0.

Then γ′0 ⊆ γ0 ⊆ γ and so γ ⇒ γ′0, and that
means that γ v ∆ because γ′0 ∈ ∆

• Second case: α1 6∈ γ′1.
Similar to the first case, γ′0 ⊆ γ0 ⊆ γ and so
again γ v ∆.

• Third case: α1 ∈ γ′0 and α1 ∈ γ′1.
In this case γ′0 and γ′1 have exactly this one com-
plementary literal, and that makes them com-
plementary NLC’s. And since ∆ is a M2DNF
and γ′0 and γ′1 are components of ∆, they must
be a minimal pair. So, γ′0 = [∧̇π1...πpα1σ1...σs]
and γ′1 = [∧̇π1...πpα1τ1...τt] with p ≥ 0, s >
0, t > 0, {σ1, ..., σs} ∩ {τ1, ..., τt} = {} and
{π1, ..., πp, σ1, ..., σs, τ1, ..., τt} ⊆ {λ1, ..., λn}.
γ′c := [∧̇π1...πpσ1...σsτ1...τt] is the c–prime fac-
tor of γ′0 and γ′1 and so γ′c ⊆ γ, that is γ ⇒ γ′c.
∆ is c–complete, so γ′c v ∆ and that means that
γ v ∆.

Thus, γ v ∆ in each case.

Now we are able to give the whole proof of the com-
pleteness theorem:

Proof (Completeness Theorem)
(i) implies (ii)

Every PDNF is both f–complete and pairwise min-
imal, as we already proved.

(ii) implies (i)
Let ∆ be a f–complete M2DNF. Suppose that ∆
is not a PDNF. So there must be a component
γ ∈ ∆ that is not a prime factor of ∆. Since ∆

is f–complete, there must be a γ′ ∈ ∆ with γ⇒̇γ′.
But in that case min (γ, γ′) = [∨γ′] so that ∆
wouldn’t be minimal, different to the initial as-
sumption. Thus, every f–complete M2DNF must
be a PDNF.

(ii) implies (iii)
Let ∆ be a f–complete M2DNF. If there is a com-
plementary and minimal pair γL and γR of com-
ponents in ∆ and their c–prime factor is γ, then
γ ⇒ [∨γLγR] ⇒ ∆, so that γ is a factor of ∆.
Because ∆ is f–complete it holds that γ v ∆. So
∆ is c–complete.

(iii) implies (ii)
Let ∆ be a c–complete M2DNF and γ be any fac-
tor of ∆. According to lemma 2 there is γ v ∆.
So ∆ is f–complete.

Summary: (i) iff (ii) iff (iii)

The P–Procedure

Lemma 3
[∨γLγR] v min (γL, γR), for any two NLC’s γL and
γR

Proof
min (γL, γR) is
• either of length 1, thus of the form [∨γ′], and then
γL ⇒ γ′ and γR ⇒ γ′

• or of length 2, thus of the form [∨γ′Lγ′R], and then
γL ⇒ γ′L and γR ⇒ γ′R.

So there is always [∨γLγR] v min (γL, γR).

Lemma 4
∆ v M–Procedure (∆) for every DNF ∆.

Proof
In every step of the M–Procedure two components
γL and γR of ∆ are replaced by the components
of min (γL, γR). Let ∆′ be the result of this
replacement. Because [∨γLγR] v min (γL, γR)
(Lemma 3) there is ∆ v ∆′ and thus ∆ v
... v M–Procedure (∆). v is transitive, so ∆ v
M–Procedure (∆).

Lemma 5
Let ∆1 be a DNF and ∆2 be a M2DNF. If
M–Procedure (∆1 ∨∆2) ≈ ∆2, then ∆1 v ∆2.

Proof
Because M–Procedure (∆1 ∨∆2) ≈ ∆2 and Lemma
4, there is ∆1 ∨∆2 v ∆2 and thus ∆1 v ∆2.

Now, we have all the ingredients to implement the P–
Procedure that transforms any DNF into its PDNF. It

29

is standing on two feet: the M–Procedure and the com-
pleteness theorem, that guarantees us that a M2DNF
∆ is a PDNF iff CPrimes (∆) v ∆. Because of lemma
5 it follows that for a DNF ∆ and Π := CPrimes (∆)
holds:
• if M–Procedure (Π ∨ ∆) ≈ ∆, then ∆ is a M2DNF

with Π v ∆ and thus ∆ is a PDNF.

We use this to implement the P–Procedure
that generates for a given DNF ∆ a sequence
∆1,Π1,∆2,Π2, ...,∆i−1,Πi−1,∆i,Πi, ... where
• ∆1 := M–Procedure (∆)
• Πi := CPrimes (∆i)
• ∆i+1 := M–Procedure (Πi ∨∆i)

We know that ∆ ⇔ ∆1 ⇔ ... ⇔ ∆i ⇔ So, if there
is a fixpoint z with ∆z ≈ ∆z+1 (and thus ∆z ≈ ∆z+n

for all n), ∆z has to be the PDNF of ∆. Thus, the only
thing that is left to be proven is that such a z actually
exists for every DNF ∆.18 But first we formulate this
implementation of the P–Procedure properly:

Algorithm P–Procedure (∆)
begin
i := 1 ;
∆1 := M–Procedure (∆) ;
repeat

Πi := CPrimes (∆i) ;
i := i+ 1 ;
∆i := M–Procedure (Πi−1 ∨∆i−1) ;

until ∆i ≈ ∆i−1 ;
return ∆i ;

end.

The following theorem will enable the proof that the
P–Procedure terminates for every input DNF ∆.

Theorem
v is a (partial) order on the set of all M2DNF’s in
the following sense:
• v is reflexive
• v is transitive

• v is anti–symmetric: ∆1 v ∆2 and ∆2 v ∆1 im-
plies ∆1 ≈ ∆2

Proof
We stated earlier that v is a quasi–order on the set
of DNF’s. It remains to show the anti–symmetry:
Assume that ∆1 v ∆2 and ∆2 v ∆1, but ∆1 6≈ ∆2.
That would mean the existence of a γ ∈ ∆1 with
γ 6∈ ∆2 (or the other way round). Since ∆1 v ∆2

there must be a γ′ ∈ ∆2 with γ ⇒ γ′. On the
other hand ∆2 v ∆1 implies the existence of a
γ′′ ∈ ∆1 with γ′ ⇒ γ′′. But then γ ⇒ γ′′, and
min (γ, γ′′) = [∨γ′′], and that contradicts the as-
sumption that ∆1 is pairwise minimal.

Proof (Termination of the P–Procedure)
The sequence ∆1,∆2, ...,∆i−1,∆i, ... that the P–
Procedure generates, is finite because:
(i) The set {∆1,∆2, ...,∆i−1,∆i, ...} is finite. For ev-
ery DNF ∆ there is At (CPrimes (∆)) ⊆ At (∆) and
At (M–Procedure (∆)) ⊆ At (∆) and so At (∆i) ⊆
At (∆) for every i. But since there is only a finite
number of NLC’s on a finite atom set and M2DNF’s
don’t have any two equal components, there is only
a finite number of M2DNF’s on a finite atom set.
(ii) ∆1 v ∆2 v ∆3 v ... because for every i =
1, 2, 3, ...
• ∆i v Πi ∨ ∆i following immediately from ∆i ⊆

Πi ∨∆i

• Πi ∨ ∆i v M–Procedure (Πi ∨ ∆i) according to
lemma 4

and so, since v is transitive:
• ∆i v M–Procedure (Πi ∨∆i) =: ∆i+1

Thus, for every sequence ∆1 v ∆2 v ∆3 v ... there
must be a z such that ∆z ≈ ∆z+1 ≈ ∆z+2 ≈ ... and
this is the condition for the algorithm to terminate.

We summarize:

Theorem
P–Procedure (∆) is the PDNF of ∆, for every DNF
∆.

18There is even an apriori upper bound for z, namely the number of atoms in ∆. But in average applications z is actually very
small and quite independent of the number of atoms.

30

12 * Implementation of the P–
Procedure

Our implementation of the P–Procedure comprised
three operations: the M–Procedure, the generation of
CPrimes and the ≈–decision. But instead of per-
forming these operations subsequently, we can merge
them into one single step and increase the speed of
the algorithm considerably. Instead of first construct-
ing the M–Procedure by using min and afterwards
generating all the c–prime factors, we could imme-
diately combine these by using prim instead of min,
since “prim = min + c–prime”. We define a recur-
sive algorithm prec to transform the P–Procedure sim-
ilar to the algorithm mrec by extending its three ar-
guments to four. ∆3 is the collection of all the c–
prime factors of [∨γ1µ1],[∨γ1µ2],...,[∨γ1µn]. If required
∆3 will be attached to ∆0 such that the property
CPrimes (Ψ2) v ∆0 ∨ ∆1 ∨ ∆2 ∨ ∆3 is maintained
in every step of the process, so that in the end, when
Ψ2 is returned, it is guaranteed to be c–complete.

Definition and Theorem
Let
• ∆0 = [∨γ1...γn] be a DNF with c ≥ 0
• ∆1 = [∨µ1...µn] be a M2DNF with n ≥ 0
• ∆2 = [∨µn+1...µn+m] be a M2DNF with m ≥ 0
• ∆3 = [∨π1...πp] a DNF with p ≥ 0
• ∆ := ∆0 ∨∆1 ∨∆2 ∨∆3

such that

• Ψ1 :=
{

[∨µ1...µn] if c = 0
[∨γ1µ1...µn] if c > 0

}
is a M2DNF

• Ψ2 := ∆1 ∨ ∆2 = [∨µ1...µnµn+1...µn+m] is a
M2DNF

• CPrimes (Ψ2) v ∆
Then we define

prec (∆0,∆1,∆2,∆3)
according to the table at the end of this chapter.
Then it holds that

• prec (∆0,∆1,∆2,∆3) ⇔ ∆
• prec (∆0,∆1,∆2,∆3) is a PDNF

∆︷ ︸︸ ︷
[∨

Ψ1︷︸︸︷
γ1 γ2...γc]︸ ︷︷ ︸

∆0

∨ [∨
Ψ1︷ ︸︸ ︷

µ1...µn]︸ ︷︷ ︸
∆1

∨ [∨µn+1...µn+m]︸ ︷︷ ︸
∆2︸ ︷︷ ︸

Ψ2

∨ [∨π1...πp]︸ ︷︷ ︸
∆3

The definition of prec immediately allows to derive:
• A new and faster implementation of the P–

Procedure:
Definition

P-Procedure (∆) := prec (∆, [∨], [∨], [∨]) for every
DNF ∆.

Theorem
P-Procedure (∆) is the PDNF of ∆, for every DNF
∆.

• A PDNF normalizer:
Definition

pdnf (ϕ) := P-Procedure (dnf (ϕ)) for every for-
mula ϕ.

Theorem
pdnf (ϕ) is the PDNF of ϕ, for every formula ϕ.

• A special disjunctor:
Definition

dnf-or-pdnf (∆1,∆2) := prec (∆1, [∨],∆2, [∨]) for
every DNF ∆1 and PDNF ∆2.

Theorem
dnf-or-pdnf (∆1,∆2) is the PDNF of ∆1 ∨∆2, for
every DNF ∆1 and PNDF ∆2.

Proof (Correctness of prec)
The correctness of mrec and the P–Procedure (in
the first version) have been proved thoroughly. The
correctness of prec can be proven analogue to mrec.
Only the fact that prec always terminates deserves
additional attention, and this is guaranteed by the
correctness proof of the P–Procedure.

31

prec ([∨γ1...γc], [∨µ1...µn], [∨µn+1...µn+m], [∨π1...πp])

:=



[∨µ1...µnµn+1...µn+m] if c = 0 and p = 0

prec ([∨π1...πp], [∨], [∨µ1...µnµn+1...µn+m], [∨]) if c = 0 and p > 0

prec ([∨γ2...γcπ1...πp], [∨], [∨γ1µ1...µn], [∨]) if c > 0 and m = 0

prec ([∨γ2...γc], [∨], [∨µ1...µnµn+1...µn+m], [∨]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N000”, [∨µn+1])

prec ([∨γ2...γcµn+2...µn+mπ1...πp], [∨], [∨γ1µ1...µn], [∨]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N00P”, [∨γ1])

prec ([∨γ2...γc], [∨], [∨µ1...µnµn+1...µn+m], [∨]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N0P0”, [∨µn+1])

prec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m], [∨π1...πp]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N0PP”, [∨γ1µn+1])

prec ([∨γ2...γcγ′], [∨], [∨µ1...µnµn+2...µn+m], [∨]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N100”, [∨γ′])

prec ([∨γ2...γcµ′
n+1µn+2...µn+mπ1...πp], [∨], [∨γ1µ1...µn], [∨]) if c > 0 and m > 0 and

xprim (γ1, µn+1) = (“N10P”, [∨γ1µ′
n+1])

prec ([∨γ2...γcγ′
1], [∨], [∨µ1...µnµn+1...µn+m], [∨]) if c > 0 and m > 0 and

xprim (γ1, µn+1) = (“N1P0”, [∨γ′
1µn+1])

prec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m], [∨ππ1...πp]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“N1PP”, [∨γ1µn+1π])

prec ([∨γ1...γc], [∨µ1...µnµn+1], [∨µn+2...µn+m], [∨π1...πp]) if c > 0 and m > 0 and
xprim (γ1, µn+1) = (“NMNN”, [∨γ1µn+1])

32

13 * Implementation: The
PDNF and the PCNF sys-
tem

Now we are able to gather the pieces to present the
final PDNF and PCNF systems:
• Due to the duality principle we can implement the

PCNF system dual to the PDNF system. All the
auxiliary algorithms (jrec, prec, xprim, prim, and
xprec) are exactly the ones already defined in earlier
chapters, except that they make use of the junctor
variable ∗, to serve for the PCNF system as well as
for the PDNF system.

• In the last chapter we implemented the PDNF nor-
malizer as follows:

pdnf (ϕ) := P–Procedure (dnf (ϕ))
:= prec (dnf (ϕ), [∨], [∨], [∨])

But dnf makes repeatedly use of the distributive
law and multiple occurings of components are not
deleted. The resulting length of the DNF can ex-
plode, even for a simple looking ϕ. And instead of

reducing this DNF in a second step by means of
prec, it is in general more efficient19 to define pdnf
as a recursion that operates itself only on PDNF’s.
Besides, that is more elegant. So we don’t define the
final PDNF system as an extension of the earlier de-
fined DNF system, but design it as an independent
one, only similar to the DNF system.

Finally note that:
• The following systems are only precanonic. We men-

tioned earlier how this can easily be extended to a
canonic system. One can implement
• ord (Φ) a standard sorting algorithm that rear-

ranges the components of the DNF or CNF Φ ac-
cording to the given (or any other) linear order on
the set of NLC’s and NLD’s, so that the result is
an ordered DNF or CNF.

• opdnf (ϕ) := ord (pdnf (ϕ)) for the unique ordered
PDNF and opcnf (ϕ) := ord (pcnf (ϕ)) for the
unique ordered PCNF of each formula ϕ.

• The part with the algorithms on subvalence and cov-
ering can simply be attached.

19at least if we consider the worst case

33

The PDNF and the PCNF system

The PDNF system: Declaration The PCNF system: Declaration

The Normalizer The Normalizer

pdnf (ϕ) pcnf (ϕ)
is the PDNF of ϕ, for every formula ϕ is the PCNF of ϕ, for every formula ϕ

Conjunctions and Disjunctions Conjunctions and Disjunctions

nlc-and-nlc (γ1, γ2) nlc-or-nld (δ1, δ2)
is the PDNF of [∧γ1γ2], for every two NLC’s γ1 and γ2 is the PCNF of [∨δ1δ2], for every two NLD’s δ1 and δ2

nlc-or-nlc (γ1, γ2) nlc-and-nld (δ1, δ2)
is the PDNF of [∨γ1γ2], for every two NLC’s γ1 and γ2 is the PCNF of [∧δ1δ2], for every two NLD’s δ1 and δ2

nlc-and-pdnf (γ, ∆) nld-or-pcnf (δ, Γ)
is the PDNF of [∧γ∆], for every NLC γ and PDNF ∆ is the PCNF of [∨δΓ], for every NLD δ and PCNF Γ

nlc-or-pdnf (γ, ∆) nld-and-pcnf (δ, Γ)
is the PDNF of [∨γ∆], for every NLC γ and PDNF ∆ is the PCNF of [∧δΓ], for every NLD δ and PCNF Γ

pdnf-and-pdnf (∆1, ∆2) pcnf-or-pcnf (Γ1, Γ2)
is the PDNF of [∧∆1∆2], for every two PDNF’s ∆1 and ∆2 is the PCNF of [∨Γ1Γ2], for every two PCNF’s Γ1 and Γ2

pdnf-or-pdnf (∆1, ∆2) pcnf-and-pcnf (Γ1, Γ2)
is the PDNF of [∨∆1∆2], for every two PDNF’s ∆1 and ∆2 is the PCNF of [∧Γ1Γ2], for every two PCNF’s Γ1 and Γ2

pdnf-conj ((∆1, ..., ∆n)) pcnf-disj ((Γ1, ..., Γn))
is the PDNF of [∧∆1...∆n], for every list (∆1, ..., ∆n) of PDNF’s with
n ≥ 0

is the PCNF of [∨Γ1...Γn], for every list (Γ1, ..., Γn) of PCNF’s with n ≥ 0

pdnf-disj ((∆1, ..., ∆n)) pcnf-conj ((Γ1, ..., Γn))
is the PDNF of [∨∆1...∆n], for every list (∆1, ..., ∆n) of PDNF’s with
n ≥ 0

is the PCNF of [∧Γ1...Γn], for every list (Γ1, ..., Γn) of PCNF’s with n ≥ 0

The PDNF system: Implementation The PCNF system: Implementation

pdnf (ϕ) pcnf (ϕ)

:=



[∨[∧ϕ]] if ϕ is an atom

[∨] if ϕ = 0

[∨[∧]] if ϕ = 1

[∨[∧¬α]] if ϕ = ¬α and α is atom

[∨[∧]] if ϕ = ¬0

[∨] if ϕ = ¬1

pdnf (ϕ′) if ϕ = ¬¬ϕ′

pdnf-disj ((pdnf (¬ϕ1), ..., pdnf (¬ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

pdnf-conj ((pdnf (¬ϕ1), ..., pdnf (¬ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

pdnf-conj ((pdnf (ϕ1), ..., pdnf (ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

pdnf-disj ((pdnf (ϕ1), ..., pdnf (ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

pdnf-and-pdnf (pdnf (ϕ1), pdnf (¬ϕ2)) if ϕ = ¬[ϕ1 → ϕ2]

pdnf-or-pdnf (
pdnf-and-pdnf (pdnf (ϕ1), pdnf (¬ϕ2)),
pdnf-and-pdnf (pdnf (¬ϕ1), pdnf (ϕ2))) if ϕ = ¬[ϕ1 ↔ ϕ2]

pdnf-conj (pdnf (ϕ1), ..., pdnf (ϕn)) if ϕ = [∧ϕ1...ϕn]

pdnf-disj (pdnf (ϕ1), ..., pdnf (ϕn)) if ϕ = [∨ϕ1...ϕn]

pdnf-disj (pdnf (¬ϕ1), ..., pdnf (¬ϕn)) if ϕ = [∧ϕ1...ϕn]

pdnf-conj (pdnf (¬ϕ1), ..., pdnf (¬ϕn)) if ϕ = [∨ϕ1...ϕn]

pdnf-or-pdnf (pdnf (¬ϕ1), pdnf (ϕ2)) if ϕ = [ϕ1 → ϕ2]

pdnf-or-pdnf (
pdnf-and-pdnf (pdnf (ϕ1), pdnf (ϕ2)),
pdnf-and-pdnf (pdnf (¬ϕ1), pdnf (¬ϕ2))) if ϕ = [ϕ1 ↔ ϕ2]

:=



[∧[∨ϕ]] if ϕ is an atom

[∧[∨]] if ϕ = 0

[∧] if ϕ = 1

[∧[∨¬α]] if ϕ = ¬α and α is atom

[∧] if ϕ = ¬0

[∧[∨]] if ϕ = ¬1

pcnf (ϕ′) if ϕ = ¬¬ϕ′

pcnf-disj ((pcnf (¬ϕ1), ..., pcnf (¬ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

pcnf-conj ((pcnf (¬ϕ1), ..., pcnf (¬ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

pcnf-conj ((pcnf (ϕ1), ..., pcnf (ϕn))) if ϕ = ¬[∧ϕ1...ϕn]

pcnf-disj ((pcnf (ϕ1), ..., pcnf (ϕn))) if ϕ = ¬[∨ϕ1...ϕn]

pcnf-and-pcnf (pcnf (ϕ1), pcnf (¬ϕ2)) if ϕ = ¬[ϕ1 → ϕ2]

pcnf-or-pcnf (
pcnf-and-pcnf (pcnf (ϕ1), pcnf (¬ϕ2)),
pcnf-and-pcnf (pcnf (¬ϕ1), pcnf (ϕ2))) if ϕ = ¬[ϕ1 ↔ ϕ2]

pcnf-conj (pcnf (ϕ1), ..., pcnf (ϕn)) if ϕ = [∧ϕ1...ϕn]

pcnf-disj (pcnf (ϕ1), ..., pcnf (ϕn)) if ϕ = [∨ϕ1...ϕn]

pcnf-disj (pcnf (¬ϕ1), ..., pcnf (¬ϕn)) if ϕ = [∧ϕ1...ϕn]

pcnf-conj (pcnf (¬ϕ1), ..., pcnf (¬ϕn)) if ϕ = [∨ϕ1...ϕn]

pcnf-or-pcnf (pcnf (¬ϕ1), pcnf (ϕ2)) if ϕ = [ϕ1 → ϕ2]

pcnf-or-pcnf (
pcnf-and-pcnf (pcnf (ϕ1), pcnf (ϕ2)),
pcnf-and-pcnf (pcnf (¬ϕ1), pcnf (¬ϕ2))) if ϕ = [ϕ1 ↔ ϕ2]

nlc-and-nlc (γ1, γ2) nld-or-nld (δ1, δ2)

:= jrec (γ1, γ2, [∧]) := jrec (δ1, δ2, [∨])

34

nlc-or-nlc (γ1, γ2) nld-and-nld (δ1, δ2)

:= prim (γ1, γ2) := prim (δ1, δ2)

nlc-and-pdnf (γ, [∨γ1...γn]) nld-or-pcnf (δ, [∧δ1...δn])

:= pdnf-disj ((nlc-and-nlc (γ, γ1), ..., nlc-and-nlc (γ, γn))) := pcnf-conj ((nld-or-nld (δ, δ1), ..., nld-or-nld (δ, δn)))

nlc-or-pdnf (γ, ∆) nld-and-pcnf (δ, Γ)

:= prec ([∨γ], [∨], ∆, [∨]) := prec ([∧δ], [∧], Γ, [∧])

pdnf-and-pdnf ([∨γ1...γn], ∆) pcnf-or-pcnf ([∧δ1...δn], Γ)

:= pdnf-disj ((nlc-and-pdnf (γ1, ∆), ..., nlc-and-pdnf (γn, ∆))) := pcnf-conj ((nld-or-pcnf (δ1, Γ), ..., nld-or-pcnf (δn, Γ)))

pdnf-or-pdnf (∆1, ∆2) pcnf-and-pcnf (Γ1, Γ2)

:= prec (∆1, [∨], ∆2, [∨]) := prec (Γ1, [∧], Γ2, [∧])

pdnf-conj ((∆1, ..., ∆n)) pcnf-disj ((Γ1, ..., Γn))

:=


[∨[∧]] if n = 0

∆1 if n = 1

pdnf-and-pdnf (∆1, pdnf-conj ((∆2, ..., ∆n))) if n > 1

:=



[∧[∨]] if n = 0

Γ1 if n = 1

pcnf-and-pcnf (Γ1, pcnf-disj ((Γ2, ..., Γn))) if n > 1

pdnf-disj ((∆1, ..., ∆n)) pcnf-conj ((Γ1, ..., Γn))

:=


[∨] if n = 0

∆1 if n = 1

pdnf-or-pdnf (∆1, pdnf-disj ((∆2, ..., ∆n))) if n > 1

:=


[∧] if n = 0

Γ1 if n = 1

pcnf-and-pcnf (Γ1, pcnf-conj ((Γ2, ..., Γn))) if n > 1

Auxiliary algorithms

∗ :=
{
∨ if ∗ = ∧
∧ if ∗ = ∨

}
for ∗ ∈ {∧,∨}

jrec ([∗λ1...λn], [∗λ′1...λ′m], [∗µ1...µk])

:=



[∗[∗µ1...µkλ′1...λ′m]] if n = 0

[∗[∗µ1...µkλ1...λn]] if m = 0

jrec ([∗λ2...λn], [∗λ′1...λ′m], [∗µ1...µkλ1]) if n > 0 and m > 0 and |λ1| < |λ′1|

jrec ([∗λ1...λn], [∗λ′2...λ′m], [∗µ1...µkλ′1]) if n > 0 and m > 0 and |λ′1| < |λ1|

jrec ([∗λ2...λn], [∗λ′2...λ′m], [∗µ1...µkλ1]) if n > 0 and m > 0 and λ1 = λ′1

[∗] if n > 0 and m > 0 and λ1 = λ′1

prec ([∗γ1...γc], [∗µ1...µn], [∗µn+1...µn+m], [∗π1...πp])

:=



[∗µ1...µnµn+1...µn+m] if c = 0 and p = 0

prec ([∗π1...πp], [∗], [∗µ1...µnµn+1...µn+m], [∗]) if c = 0 and p > 0

prec ([∗γ2...γcπ1...πp], [∗], [∗γ1µ1...µn], [∗]) if c > 0 and m = 0

prec ([∗γ2...γc], [∗], [∗µ1...µnµn+1...µn+m], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N000”, [∗µn+1])

prec ([∗γ2...γcµn+2...µn+mπ1...πp], [∗], [∗γ1µ1...µn], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N00P”, [∗γ1])

prec ([∗γ2...γc], [∗], [∗µ1...µnµn+1...µn+m], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N0P0”, [∗µn+1])

prec ([∗γ1...γc], [∗µ1...µnµn+1], [∗µn+2...µn+m], [∗π1...πp]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N0PP”, [∗γ1µn+1])

prec ([∗γ2...γcγ′], [∗], [∗µ1...µnµn+2...µn+m], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N100”, [∗γ′])

prec ([∗γ2...γcµ′n+1µn+2...µn+mπ1...πp], [∗], [∗γ1µ1...µn], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N10P”, [∗γ1µ′n+1])

prec ([∗γ2...γcγ′1], [∗], [∗µ1...µnµn+1...µn+m], [∗]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N1P0”, [∗γ′1µn+1])

prec ([∗γ1...γc], [∗µ1...µnµn+1], [∗µn+2...µn+m], [∗ππ1...πp]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“N1PP”, [∗γ1µn+1π])

prec ([∗γ1...γc], [∗µ1...µnµn+1], [∗µn+2...µn+m], [∗π1...πp]) if c > 0 and m > 0 and xprim (γ1, µn+1) = (“NMNN”, [∗γ1µn+1])

prim ([∗λ1...λx], [∗λ′1...λ′y])

35

:= Φ, where Φ is defined by (ξ, Φ) := xprim ([∗λ1...λx], [∗λ′1...λ′y])

xprim ([∗λ1...λx], [∗λ′1...λ′y])

:= xprec ([∗], [∗λ1...λx], [∗], [∗λ′1...λ′y], [∗], [∗], [∗], 0, 0, 0)

algorithm xprec ([∗λ1...λi], [∗λi+1...λx], [∗λ′1...λ′j], [∗λ′j+1...λ′y], [∗π1...πa], [∗π′1...π′b], [∗π′′1 ...π′′c], r, s, t)

begin

if r > 1

then (“NMNN”, [∗[∗λ1...λiλi+1...λx][∗λ′1...λ′jλ′j+1...λ′y]])

else if x = i

then if r = 0

then if s = 0

then if (j = y and t = 0)

then (“N000”, [∗[∗λ1...λi]])

else (“N00P”, [∗[∗λ1...λi]])

else if (j = y and t = 0)

then (“N0P0”, [∗[∗λ′1...λ′j]])

else (“N0PP”, [∗[∗λ1...λi][∗λ′1...λ′jλ′j+1...λ′y]])

else if s = 0

then if (j = y and t = 0)

then (“N100”, [∗[∗π1...πa]])

else (“N10P”, [∗[∗λ1...λi][∗π′1...π′bλ′j+1...λ′y]])

else if (j = y and t = 0)

then (“N1P0”, [∗[∗π1...πa][∗λ′1...λ′jλ′j+1...λ′y]])

else (“N1PP”, [∗[∗λ1...λi][∗λ′1...λ′jλ′j+1...λ′y][∗π′′1 ...π′′c λ′j+1...λ′y]])

else if j = y

then if r = 0

then if t = 0

then (“N0P0”, [∗[∗λ′1...λ′j]])

else (“N0PP”, [∗[∗λ1...λiλi+1..λx][∗λ′1...λ′j]])

else if t = 0

then (“N1P0”, [∗[∗π1...πaλi+1...λx][∗λ′1...λ′j]])

else (“N1PP”, [∗[∗λ1...λiλi+1...λx][∗λ′1...λ′j][∗π′′1 ...π′′c λi+1...λx]])

else if |λi+1| < |λ′j+1|

then xprec ([∗λ1...λiλi+1], [∗λi+2...λx], [∗λ′1...λ′j], [∗λ′j+1...λ′y], [∗π1...πaλi+1], [∗π′1...π′b], [∗π′′1 ...π′′c λi+1], r, s + 1, t)

else if |λ′j+1| < |λi+1|

then xprec ([∗λ1...λi], [∗λi+1...λx], [∗λ′1...λ′jλ′j+1], [∗λ′j+2...λ′y], [∗π1...πa], [∗π′1...π′bλ′j+1], [∗π′′1 ...π′′c λ′j+1], r, s, t + 1)

else if λi+1 = λj+1

then xprec ([∗λ1...λiλi+1], [∗λi+2...λx], [∗λ′1...λ′jλ′j+1], [∗λ′j+2...λ′y], [∗π1...πaλi+1], [∗π′1...π′bλ′j+1], [∗π′′1 ...π′′c λ′j+1], r, s, t)

else xprec ([∗λ1...λi], [∗λi+2...λx], [∗λ′1...λ′j], [∗λ′j+2...λ′y], [∗π1...πa], [∗π′1...π′b], [∗π′′1 ...π′′c], r + 1, s, t)

end.

36

